このアイテムのアクセス数: 325

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
jrr_rrt133.pdf1.2 MBAdobe PDF見る/開く
完全メタデータレコード
DCフィールド言語
dc.contributor.authorSasaki, Masao Sen
dc.contributor.authorTachibana, Akiraen
dc.contributor.authorTakeda, Shunichien
dc.contributor.alternative佐々木, 正夫ja
dc.date.accessioned2014-06-06T06:39:36Z-
dc.date.available2014-06-06T06:39:36Z-
dc.date.issued2014-05-01-
dc.identifier.issn0449-3060-
dc.identifier.urihttp://hdl.handle.net/2433/187800-
dc.description.abstractCancer risk at low doses of ionizing radiation remains poorly defined because of ambiguity in the quantitative link to doses below 0.2 Sv in atomic bomb survivors in Hiroshima and Nagasaki arising from limitations in the statistical power and information available on overall radiation dose. To deal with these difficulties, a novel nonparametric statistics based on the 'integrate-and-fire' algorithm of artificial neural networks was developed and tested in cancer databases established by the Radiation Effects Research Foundation. The analysis revealed unique features at low doses that could not be accounted for by nominal exposure dose, including (i) the presence of a threshold that varied with organ, gender and age at exposure, and (ii) a small but significant bumping increase in cancer risk at low doses in Nagasaki that probably reflects internal exposure to (239)Pu. The threshold was distinct from the canonical definition of zero effect in that it was manifested as negative excess relative risk, or suppression of background cancer rates. Such a unique tissue response at low doses of radiation exposure has been implicated in the context of the molecular basis of radiation-environment interplay in favor of recently emerging experimental evidence on DNA double-strand break repair pathway choice and its epigenetic memory by histone marking.en
dc.format.mimetypeapplication/pdf-
dc.language.isoeng-
dc.publisherOxford University Pressen
dc.rights© The Author 2013. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.en
dc.rightsThis is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.en
dc.subjectcancer risken
dc.subjectlow-dose radiationen
dc.subjectA-bomb survivorsen
dc.subjectartificial neural networksen
dc.subjectintegrate-and-fire modelen
dc.subjectDSB repair pathway choiceen
dc.titleCancer risk at low doses of ionizing radiation: artificial neural networks inference from atomic bomb survivors.en
dc.typejournal article-
dc.type.niitypeJournal Article-
dc.identifier.ncidAA00705792-
dc.identifier.jtitleJournal of radiation researchen
dc.identifier.volume55-
dc.identifier.issue3-
dc.identifier.spage391-
dc.identifier.epage406-
dc.relation.doi10.1093/jrr/rrt133-
dc.textversionpublisher-
dc.identifier.pmid24366315-
dcterms.accessRightsopen access-
出現コレクション:学術雑誌掲載論文等

アイテムの簡略レコードを表示する

Export to RefWorks


出力フォーマット 


このリポジトリに保管されているアイテムはすべて著作権により保護されています。