ダウンロード数: 319
このアイテムのファイル:
ファイル | 記述 | サイズ | フォーマット | |
---|---|---|---|---|
j.electacta.2014.11.113.pdf | 1.47 MB | Adobe PDF | 見る/開く |
完全メタデータレコード
DCフィールド | 値 | 言語 |
---|---|---|
dc.contributor.author | Kawai, Shota | en |
dc.contributor.author | Yakushi, Toshiharu | en |
dc.contributor.author | Matsushita, Kazunobu | en |
dc.contributor.author | Kitazumi, Yuki | en |
dc.contributor.author | Shirai, Osamu | en |
dc.contributor.author | Kano, Kenji | en |
dc.contributor.alternative | 加納, 健司 | ja |
dc.date.accessioned | 2014-12-24T02:23:22Z | - |
dc.date.available | 2014-12-24T02:23:22Z | - |
dc.date.issued | 2015-01-10 | - |
dc.identifier.issn | 0013-4686 | - |
dc.identifier.uri | http://hdl.handle.net/2433/192482 | - |
dc.description.abstract | A heterotrimeric membrane-bound fructose dehydrogenase (FDH) from Gluconobacter japonicus NBRC3260 contains FAD in subunit I and three heme C moieties in subunit II as the redox centers, and is one of the direct electron transfer (DET)-type redox enzymes. FDH-catalyzed current density of fructose oxidation at hydrophilic mercaptoethanol (MEtOH)-modified Au electrode is much larger than that at hydrophobic mercaptoethane (MEtn)-modified Au electrode. Addition of a non-ionic surfactant Triton® X-100 (1%) completely quenches the catalytic current at the MEtn-modified Au electrode, while only small competitive effect is observed at the MEtOH-modified Au electrode. Quartz crystal microbalance measurements support the adsorption of FDH and Triton® X-100 on both of the modified electrodes. We propose a model to explain the phenomenon as follows. The surfactant forms a monolayer on the hydrophobic MEtn-modified electrode with strong hydrophobic interaction, and FDH adsorbs on the surface of the surfactant monolayer. The monolayer inhibits the electron transfer from FDH to the electrode. On the other hand, the surfactant forms a bilayer on the hydrophilic MEtOH-modified electrode. The interaction between the surfactant bilayer and the hydrophilic electrode is relatively weak so that FDH replaces the surfactant and is embedded in the bilayer to communicate electrochemically with the hydrophilic electrode. | en |
dc.format.mimetype | application/pdf | - |
dc.language.iso | eng | - |
dc.publisher | Elsevier Ltd. | en |
dc.rights | © 2014 Elsevier Ltd. | en |
dc.rights | This is not the published version. Please cite only the published version. | en |
dc.rights | この論文は出版社版でありません。引用の際には出版社版をご確認ご利用ください。 | ja |
dc.subject | fructose dehydrogenase | en |
dc.subject | self-assembled monolayer | en |
dc.subject | surfactant layer | en |
dc.subject | bioelectrocatalysis | en |
dc.subject | direct electron transfer | en |
dc.title | Role of a non-ionic surfactant in direct electron transfer-type bioelectrocatalysis by fructose dehydrogenase | en |
dc.type | journal article | - |
dc.type.niitype | Journal Article | - |
dc.identifier.ncid | AA00633261 | - |
dc.identifier.jtitle | Electrochimica Acta | en |
dc.identifier.volume | 152 | - |
dc.identifier.spage | 19 | - |
dc.identifier.epage | 24 | - |
dc.relation.doi | 10.1016/j.electacta.2014.11.113 | - |
dc.textversion | author | - |
dcterms.accessRights | open access | - |
出現コレクション: | 学術雑誌掲載論文等 |
このリポジトリに保管されているアイテムはすべて著作権により保護されています。