Access count of this item: 45

Files in This Item:
File Description SizeFormat 
PhysRevB.91.094414.pdf949.41 kBAdobe PDFView/Open
Title: Thermal phase transition of generalized Heisenberg models for SU(N) spins on square and honeycomb lattices
Authors: Suzuki, Takafumi
Harada, Kenji  kyouindb  KAKEN_id
Matsuo, Haruhiko
Todo, Synge
Kawashima, Naoki
Author's alias: 原田, 健自
Issue Date: 16-Mar-2015
Publisher: American Physical Society
Journal title: Physical Review B
Volume: 91
Issue: 9
Thesis number: 094414
Abstract: We investigate thermal phase transitions to a valence-bond solid phase in SU(N) Heisenberg models with four- or six-body interactions on a square or honeycomb lattice, respectively. In both cases, a thermal phase transition occurs that is accompanied by rotational symmetry breaking of the lattice. We perform quantum Monte Carlo calculations in order to clarify the critical properties of the models. The estimated critical exponents indicate that the universality classes of the square- and honeycomb-lattice cases are identical to those of the classical XY model with a Z[4] symmetry-breaking field and the three-state Potts model, respectively. In the square-lattice case, the thermal exponent, ν, monotonically increases as the system approaches the quantum critical point, while the values of the critical exponents, η and γ/ν, remain constant. From a finite-size scaling analysis, we find that the system exhibits weak universality, because the Z[4] symmetry-breaking field is always marginal. In contrast, ν in the honeycomb-lattice case exhibits a constant value, even in the vicinity of the quantum critical point, because the Z[3] field remains relevant in the SU(3) and SU(4) cases.
Rights: ©2015 American Physical Society
DOI(Published Version): 10.1103/PhysRevB.91.094414
Appears in Collections:Journal Articles

Show full item record

Export to RefWorks

Export Format: 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.