Downloads: 151

Files in This Item:
File Description SizeFormat 
PhysRevE.91.062108.pdf132.28 kBAdobe PDFView/Open
Full metadata record
DC FieldValueLanguage
dc.contributor.authorOgawa, Shunja
dc.contributor.authorYamaguchi, Yoshiyuki Y.ja
dc.contributor.alternative山口, 義幸ja
dc.date.accessioned2015-09-01T00:52:02Z-
dc.date.available2015-09-01T00:52:02Z-
dc.date.issued2015-06-08-
dc.identifier.issn1539-3755ja
dc.identifier.urihttp://hdl.handle.net/2433/199680-
dc.description.abstractAn external force dynamically drives an isolated mean-field Hamiltonian system to a long-lasting quasistationary state, whose lifetime increases with population of the system. For second order phase transitions in quasistationary states, two nonclassical critical exponents have been reported individually by using a linear and a nonlinear response theories in a toy model. We provide a simple way to compute the critical exponents all at once, which is an analog of the Landau theory. The present theory extends the universality class of the nonclassical exponents to spatially periodic one-dimensional systems and shows that the exponents satisfy a classical scaling relation inevitably by using a key scaling of momentum.ja
dc.format.mimetypeapplication/pdfja
dc.language.isoengja
dc.publisherAmerican Physical Societyja
dc.rights©2015 American Physical Society.ja
dc.titleLandau-like theory for universality of critical exponents in quasistationary states of isolated mean-field systemsja
dc.type.niitypeJournal Articleja
dc.identifier.ncidAA11558033ja
dc.identifier.jtitlePhysical Review Eja
dc.identifier.volume91ja
dc.identifier.issue6ja
dc.relation.doi10.1103/PhysRevE.91.062108ja
dc.textversionpublisherja
dc.identifier.artnum062108ja
Appears in Collections:Journal Articles

Show simple item record

Export to RefWorks


Export Format: 


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.