このアイテムのアクセス数: 885

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
tmj.2013.0162.pdf340.22 kBAdobe PDF見る/開く
完全メタデータレコード
DCフィールド言語
dc.contributor.authorNishiguchi, Shuen
dc.contributor.authorIto, Hiromuen
dc.contributor.authorYamada, Minoruen
dc.contributor.authorYoshitomi, Hiroyukien
dc.contributor.authorFuru, Moritoshien
dc.contributor.authorIto, Tatsuakien
dc.contributor.authorShinohara, Akioen
dc.contributor.authorUra, Tetsuyaen
dc.contributor.authorOkamoto, Kazuyaen
dc.contributor.authorAoyama, Tomokien
dc.contributor.alternative西口, 周ja
dc.date.accessioned2015-11-06T05:23:27Z-
dc.date.available2015-11-06T05:23:27Z-
dc.date.issued2014-02-27-
dc.identifier.issn1556-3669-
dc.identifier.urihttp://hdl.handle.net/2433/201380-
dc.description.abstractObjectives: The disease activities of rheumatoid arthritis (RA) tend to fluctuate between visits to doctors, and a self-assessment tool can help patients accommodate to their current status at home. The aim of the present study was to develop a novel modality to assess the disease activity of RA by a smartphone without the need to visit a doctor. Subjects and Methods: This study included 65 patients with RA, 63.1±11.9 years of age. The 28-joint disease activity score (DAS28) was measured for all participants at each clinic visit. The patients assessed their status with the modified Health Assessment Questionnaire (mHAQ), a self-assessed tender joint count (sTJC), and a self-assessed swollen joint count (sSJC) in a smartphone application. The patients' trunk acceleration while walking was also measured with a smartphone application. The peak frequency, autocorrelation (AC) peak, and coefficient of variance of the acceleration peak intervals were calculated as the gait parameters. Results: Univariate analyses showed that the DAS28 was associated with mHAQ, sTJC, sSJC, and AC (p<0.05). In a stepwise linear regression analysis, mHAQ (β=0.264, p<0.05), sTJC (β=0.581, p<0.001), and AC (β=−0.157, p<0.05) were significantly associated with DAS28 in the final model, and the predictive model explained 67% of the DAS28 variance. Conclusions: The results suggest that noninvasive self-assessment of a combination of joint symptoms, limitations of daily activities, and walking ability can adequately predict disease activity of RA with a smartphone application.en
dc.format.mimetypeapplication/pdf-
dc.language.isoeng-
dc.publisherMary Ann Liebert Inc.en
dc.rightsFinal publication is available from Mary Ann Liebert, Inc., publishers http://dx.doi.org/10.1089/tmj.2013.0162.en
dc.rightsこの論文は出版社版でありません。引用の際には出版社版をご確認ご利用ください。ja
dc.rightsThis is not the published version. Please cite only the published version.en
dc.subjectRheumatoid arthritisen
dc.subjectDisease activityen
dc.subjectSmartphoneen
dc.subjectSelf-assessmenten
dc.subject.meshAgeden
dc.subject.meshArthritis, Rheumatoid/physiopathologyen
dc.subject.meshCell Phonesen
dc.subject.meshDiagnostic Self Evaluationen
dc.subject.meshFemaleen
dc.subject.meshHumansen
dc.subject.meshMaleen
dc.subject.meshMiddle Ageden
dc.subject.meshMobile Applicationsen
dc.subject.meshQuestionnairesen
dc.subject.meshSelf Care/methodsen
dc.titleSelf-assessment tool of disease activity of rheumatoid arthritis by using a smartphone application.en
dc.typejournal article-
dc.type.niitypeJournal Article-
dc.identifier.jtitleTelemedicine journal and e-health : the official journal of the American Telemedicine Associationen
dc.identifier.volume20-
dc.identifier.issue3-
dc.identifier.spage235-
dc.identifier.epage240-
dc.relation.doi10.1089/tmj.2013.0162-
dc.textversionauthor-
dc.startdate.bitstreamsavailable2015-02-27-
dc.identifier.pmid24404820-
dcterms.accessRightsopen access-
出現コレクション:学術雑誌掲載論文等

アイテムの簡略レコードを表示する

Export to RefWorks


出力フォーマット 


このリポジトリに保管されているアイテムはすべて著作権により保護されています。