このアイテムのアクセス数: 592
このアイテムのファイル:
ファイル | 記述 | サイズ | フォーマット | |
---|---|---|---|---|
s00603-015-0774-2.pdf | 770.46 kB | Adobe PDF | 見る/開く |
タイトル: | Crack Extension in Hydraulic Fracturing of Shale Cores Using Viscous Oil, Water, and Liquid Carbon Dioxide |
著者: | Bennour, Ziad Ishida, Tsuyoshi ![]() Nagaya, Yuya Chen, Youqing ![]() ![]() ![]() Nara, Yoshitaka ![]() ![]() ![]() Chen, Qu Sekine, Kotaro Nagano, Yu |
著者名の別形: | 石田, 毅 |
キーワード: | Anisotropy Acoustic emissions Shale Hydraulic fracturing Carbon dioxide Viscosity |
発行日: | 12-Jun-2015 |
出版者: | Springer Vienna |
誌名: | Rock Mechanics and Rock Engineering |
巻: | 48 |
号: | 4 |
開始ページ: | 1463 |
終了ページ: | 1473 |
抄録: | We performed hydraulic fracturing experiments on cylindrical cores of anisotropic shale obtained by drilling normal to the sedimentary plane. Experiments were conducted under ambient condition and uniaxial stresses, using three types of fracturing fluid: viscous oil, water, and liquid carbon dioxide (L-CO2). In the experiments using water and oil, cracks extended along the loading direction normal to the sedimentary plane under the uniaxial loading and extended along the sedimentary plane without loading. These results suggest that the direction of crack extension is strongly affected by in situ stress conditions. Fluorescent microscopy revealed that hydraulic fracturing with viscous oil produced linear cracks with few branches, whereas that with water produced cracks with many branches inclining from the loading axis. Statistical analysis of P wave polarity of acoustic emission waveforms showed that viscous oil tended to induce Mode I fracture, whereas both water and L-CO2 tended to induce Mode II fracture. Crack extension upon injection of L-CO2 was independent of loading condition unlike extension for the other two fluids. This result seemed attributable to the low viscosity of L-CO2 and was consistent with previous observations for granite specimens that low-viscosity fluids like CO2 tend to induce widely extending cracks with many branches, with Mode II fractures being dominant. These features are more advantageous for shale gas production than those induced by injection of conventional slick water. |
著作権等: | The final publication is available at Springer via http://dx.doi.org/10.1007/s00603-015-0774-2. The full-text file will be made open to the public on 12 June 2016 in accordance with publisher's 'Terms and Conditions for Self-Archiving'. This is not the published version. Please cite only the published version. この論文は出版社版でありません。引用の際には出版社版をご確認ご利用ください。 |
URI: | http://hdl.handle.net/2433/201552 |
DOI(出版社版): | 10.1007/s00603-015-0774-2 |
出現コレクション: | 学術雑誌掲載論文等 |

このリポジトリに保管されているアイテムはすべて著作権により保護されています。