このアイテムのアクセス数: 138

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
JHEP06(2015)191.pdf2.8 MBAdobe PDF見る/開く
完全メタデータレコード
DCフィールド言語
dc.contributor.authorAsano, Yuhmaen
dc.contributor.authorKawai, Daisukeen
dc.contributor.authorYoshida, Kentarohen
dc.contributor.alternative川井, 大輔ja
dc.contributor.alternative吉田, 健太郎ja
dc.date.accessioned2016-04-25T07:11:04Z-
dc.date.available2016-04-25T07:11:04Z-
dc.date.issued2015-06-
dc.identifier.issn1029-8479-
dc.identifier.urihttp://hdl.handle.net/2433/210358-
dc.description.abstractWe study classical chaotic motions in the Berenstein-Maldacena-Nastase (BMN) matrix model. For this purpose, it is convenient to focus upon a reduced system composed of two-coupled anharmonic oscillators by supposing an ansatz. We examine three ansätze: 1) two pulsating fuzzy spheres, 2) a single Coulomb-type potential, and 3) integrable fuzzy spheres. For the first two cases, we show the existence of chaos by computing Poincaré sections and a Lyapunov spectrum. The third case leads to an integrable system. As a result, the BMN matrix model is not integrable in the sense of Liouville, though there may be some integrable subsectors.en
dc.format.mimetypeapplication/pdf-
dc.language.isoeng-
dc.publisherSpringer Berlin Heidelbergen
dc.rights© 2015, The Author(s). This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.en
dc.rightsJHEP is an open-access journal funded by SCOAP3 and licensed under CC BY 4.0en
dc.subjectIntegrable Equations in Physicsen
dc.subjectM(atrix) Theoriesen
dc.subjectPenrose limit and pp-wave backgrounden
dc.titleChaos in the BMN matrix modelen
dc.typejournal article-
dc.type.niitypeJournal Article-
dc.identifier.ncidAA1188279X-
dc.identifier.jtitleJournal of High Energy Physicsen
dc.identifier.volume2015-
dc.relation.doi10.1007/JHEP06(2015)191-
dc.textversionpublisher-
dc.identifier.artnum191-
dcterms.accessRightsopen access-
出現コレクション:学術雑誌掲載論文等

アイテムの簡略レコードを表示する

Export to RefWorks


出力フォーマット 


このリポジトリに保管されているアイテムはすべて著作権により保護されています。