このアイテムのアクセス数: 219

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
srep30344.pdf1.54 MBAdobe PDF見る/開く
完全メタデータレコード
DCフィールド言語
dc.contributor.authorInano, Rikaen
dc.contributor.authorOishi, Naoyaen
dc.contributor.authorKunieda, Takeharuen
dc.contributor.authorArakawa, Yoshikien
dc.contributor.authorKikuchi, Takayukien
dc.contributor.authorFukuyama, Hidenaoen
dc.contributor.authorMiyamoto, Susumuen
dc.contributor.alternative大石, 直也ja
dc.contributor.alternative荒川, 芳輝ja
dc.contributor.alternative福山, 秀直ja
dc.contributor.alternative宮本, 亨ja
dc.date.accessioned2016-08-09T04:47:14Z-
dc.date.available2016-08-09T04:47:14Z-
dc.date.issued2016-07-26-
dc.identifier.issn2045-2322-
dc.identifier.urihttp://hdl.handle.net/2433/216264-
dc.description.abstractPreoperative glioma grading is important for therapeutic strategies and influences prognosis. Intratumoral heterogeneity can cause an underestimation of grading because of the sampling error in biopsies. We developed a voxel-based unsupervised clustering method with multiple magnetic resonance imaging (MRI)-derived features using a self-organizing map followed by K-means. This method produced novel magnetic resonance-based clustered images (MRcIs) that enabled the visualization of glioma grades in 36 patients. The 12-class MRcIs revealed the highest classification performance for the prediction of glioma grading (area under the receiver operating characteristic curve = 0. 928; 95% confidential interval = 0. 920–0. 936). Furthermore, we also created 12-class MRcIs in four new patients using the previous data from the 36 patients as training data and obtained tissue sections of the classes 11 and 12, which were significantly higher in high-grade gliomas (HGGs), and those of classes 4, 5 and 9, which were not significantly different between HGGs and low-grade gliomas (LGGs), according to a MRcI-based navigational system. The tissues of classes 11 and 12 showed features of malignant glioma, whereas those of classes 4, 5 and 9 showed LGGs without anaplastic features. These results suggest that the proposed voxel-based clustering method provides new insights into preoperative regional glioma grading.en
dc.format.mimetypeapplication/pdf-
dc.language.isoeng-
dc.publisherSpringer Natureen
dc.rightsThis work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/en
dc.titleVisualization of heterogeneity and regional grading of gliomas by multiple features using magnetic resonance-based clustered images.en
dc.typejournal article-
dc.type.niitypeJournal Article-
dc.identifier.jtitleScientific reportsen
dc.identifier.volume6-
dc.relation.doi10.1038/srep30344-
dc.textversionpublisher-
dc.identifier.artnum30344-
dc.identifier.pmid27456199-
dcterms.accessRightsopen access-
出現コレクション:学術雑誌掲載論文等

アイテムの簡略レコードを表示する

Export to RefWorks


出力フォーマット 


このリポジトリに保管されているアイテムはすべて著作権により保護されています。