このアイテムのアクセス数: 191

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
jacmp.v16i2.4896.pdf645.65 kBAdobe PDF見る/開く
タイトル: Baseline correction of a correlation model for improving the prediction accuracy of infrared marker-based dynamic tumor tracking
著者: Akimoto, Mami
Nakamura, Mitsuhiro  kyouindb  KAKEN_id
Mukumoto, Nobutaka  KAKEN_id  orcid https://orcid.org/0000-0002-4569-3379 (unconfirmed)
Yamada, Masahiro
Tanabe, Hiroaki
Ueki, Nami
Kaneko, Shuji  kyouindb  KAKEN_id  orcid https://orcid.org/0000-0001-5152-5809 (unconfirmed)
Matsuo, Yukinori  KAKEN_id  orcid https://orcid.org/0000-0002-4372-8259 (unconfirmed)
Mizowaki, Takashi  kyouindb  KAKEN_id  orcid https://orcid.org/0000-0002-8135-8746 (unconfirmed)
Kokubo, Masaki
Hiraoka, Masahiro
著者名の別形: 秋元, 麻未
中村, 光弘
山田, 昌弘
金子, 周史
松尾, 幸憲
溝脇, 尚志
平岡, 眞寛
キーワード: Vero4DRT
IR Tracking
correlation model
baseline drift
発行日: 2015
出版者: American Association of Physicists in Medicine
誌名: Journal of Applied Clinical Medical Physics
巻: 16
号: 2
開始ページ: 14
終了ページ: 22
抄録: We previously found that the baseline drift of external and internal respiratory motion reduced the prediction accuracy of infrared (IR) marker-based dynamic tumor tracking irradiation (IR Tracking) using the Vero4DRT system. Here, we proposed a baseline correction method, applied immediately before beam delivery, to improve the prediction accuracy of IR Tracking. To perform IR Tracking, a four-dimensional (4D) model was constructed at the beginning of treatment to correlate the internal and external respiratory signals, and the model was expressed using a quadratic function involving the IR marker position (x) and its velocity (v), namely function F(x, v). First, the first 4D model, F1st(x, v), was adjusted by the baseline drift of IR markers (BDIR) along the x-axis, as function F′(x, v). Next, BDdetect, that defined as the difference between the target positions indicated by the implanted fiducial markers (Pdetect) and the predicted target positions with F′(x, v) (Ppredict) was determined using orthogonal kV X-ray images at the peaks of the Pdetect of the end-inhale and end-exhale phases for 10 s just before irradiation. F′(x, v) was corrected with BDdetect to compensate for the residual error. The final corrected 4D model was expressed as Fcor(x, v) = F1st{(x-BDIR), v}-BDdetect. We retrospectively applied this function to 53 paired log files of the 4D model for 12 lung cancer patients who underwent IR Tracking. The 95th percentile of the absolute differences between Pdetect and Ppredict (|Ep|) was compared between F1st(x, v) and Fcor(x, v). The median 95th percentile of |Ep| (units: mm) was 1.0, 1.7, and 3.5 for F1st(x, v), and 0.6, 1.1, and 2.1 for Fcor(x, v) in the left–right, anterior–posterior, and superior–inferior directions, respectively. Over all treatment sessions, the 95th percentile of |Ep| peaked at 3.2 mm using Fcor(x, v) compared with 8.4 mm using F1st(x, v). Our proposed method improved the prediction accuracy of IR Tracking by correcting the baseline drift immediately before irradiation.
著作権等: This work is licensed under a Creative Commons Attribution 3.0 License.
URI: http://hdl.handle.net/2433/216367
DOI(出版社版): 10.1120/jacmp.v16i2.4896
PubMed ID: 26103167
関連リンク: http://www.jacmp.org/index.php/jacmp/article/view/4896
出現コレクション:学術雑誌掲載論文等

アイテムの詳細レコードを表示する

Export to RefWorks


出力フォーマット 


このリポジトリに保管されているアイテムはすべて著作権により保護されています。