ダウンロード数: 418

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
0953-2048_29_7_073001.pdf6.94 MBAdobe PDF見る/開く
タイトル: Terahertz-wave emission from Bi2212 intrinsic Josephson junctions: A review on recent progress
著者: Kakeya, Itsuhiro  kyouindb  KAKEN_id  orcid https://orcid.org/0000-0003-4999-2111 (unconfirmed)
Wang, Huabing
著者名の別形: 掛谷, 一弘
キーワード: high-Tc cuprate
intrinsic Josephson junction
terahertz electromagnetic wave
synchronisation effect
self-heating
発行日: 16-May-2016
出版者: IOP Publishing Ltd.
誌名: Superconductor Science and Technology
巻: 29
号: 7
論文番号: 073001
抄録: Emission of terahertz (THz) electromagnetic (EM) waves from a high critical temperature (T c) superconductor intrinsic Josephson junction (IJJ) is a new and promising candidate for practical applications of superconducting devices. From the engineering viewpoint, the IJJ THz source is competitive against the present semiconducting THz sources such as quantum cascade lasers (QCLs) and resonance tunnelling diode oscillators because of its broad tunable frequency range and ease of the fabrication process for the device. The emitted EM waves are considered to be coherent because the emission is yielded by synchronisation of thousand stacked IJJs consisting of the mesa device. This synchronisation is peculiar: the resonant frequency of each IJJ is distributed because the cross section of the mesa device is trapezoidal in shape. One of the key features of the synchronisation mechanism is the temperature inhomogeneity of the emitting device. In this topical review, we describe the recent progress in studies of IJJ THz sources with particular emphasis on the relevance of the temperature inhomogeneity to the synchronisation and the emission intensity. This review is of specific interest because the IJJ THz source shows the rich variety of functions due to self-heating which has always been a detrimental feature in the present superconducting devices. Moreover, the thermal managements used for IJJ THz sources will be common with those of other semiconducting devices such as QCLs. In addition, this review is to invite the readers into related research through the detailed descriptions of experimental procedures.
著作権等: This is an author-created, un-copyedited version of an article accepted for publication in 'Superconductor Science and Technology'. The publisher is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at http://dx.doi.org/10.1088/0953-2048/29/7/073001.
The full-text file will be made open to the public on 16 May 2017 in accordance with publisher's 'Terms and Conditions for Self-Archiving'.
この論文は出版社版でありません。引用の際には出版社版をご確認ご利用ください。
This is not the published version. Please cite only the published version.
URI: http://hdl.handle.net/2433/216928
DOI(出版社版): 10.1088/0953-2048/29/7/073001
出現コレクション:学術雑誌掲載論文等

アイテムの詳細レコードを表示する

Export to RefWorks


出力フォーマット 


このリポジトリに保管されているアイテムはすべて著作権により保護されています。