このアイテムのアクセス数: 207
このアイテムのファイル:
ファイル | 記述 | サイズ | フォーマット | |
---|---|---|---|---|
ATSIP.2015.5.pdf | 834.05 kB | Adobe PDF | 見る/開く |
完全メタデータレコード
DCフィールド | 値 | 言語 |
---|---|---|
dc.contributor.author | R. Gomez | en |
dc.contributor.author | T. Kawahara | en |
dc.contributor.author | K. Nakadai | en |
dc.contributor.alternative | 河原, 達也 | ja |
dc.date.accessioned | 2017-03-03T02:09:15Z | - |
dc.date.available | 2017-03-03T02:09:15Z | - |
dc.date.issued | 2015 | - |
dc.identifier.issn | 2048-7703 | - |
dc.identifier.uri | http://hdl.handle.net/2433/218589 | - |
dc.description.abstract | The paper addresses a robust wavelet-based speech enhancement for automatic speech recognition in reverberant and noisy conditions. We propose a novel scheme in improving the speech, late reflection, and noise power estimates from the observed contaminated signal. The improved estimates are used to calculate theWiener gain in filtering the late reflections and additive noise. In the proposed scheme, optimization of the wavelet family and its parameters is conducted using an acoustic model (AM). In the offline mode, the optimal wavelet family is selected separately for the speech, late reflections, and background noise based on the AM likelihood. Then, the parameters of the selected wavelet family are optimized specifically for each signal subspace. As a result we can use a wavelet sensitive to the speech, late reflection, and the additive noise, which can independently and accurately estimate these signals directly from an observed contaminated signal. For speech recognition, the most suitable wavelet is identified from the pre-stored wavelets, and wavelet-domain filtering is conducted to the noisy and reverberant speech signal. Experimental evaluations using real reverberant data demonstrate the effectiveness and robustness of the proposed method. | en |
dc.format.mimetype | application/pdf | - |
dc.language.iso | eng | - |
dc.publisher | Cambridge University Press (CUP) | en |
dc.rights | © The Authors, 2015. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/3.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited. doi:10.1017/ATSIP.2015.5 | en |
dc.subject | Automatic speech recognition | en |
dc.subject | Dereverberation | en |
dc.subject | Robustness | en |
dc.title | Optimized wavelet-domain filtering under noisy and reverberant conditions | en |
dc.type | journal article | - |
dc.type.niitype | Journal Article | - |
dc.identifier.jtitle | APSIPA Transactions on Signal and Information Processing | en |
dc.identifier.volume | 4 | - |
dc.identifier.issue | e3 | - |
dc.identifier.spage | 1 | - |
dc.identifier.epage | 12 | - |
dc.relation.doi | 10.1017/ATSIP.2015.5 | - |
dc.textversion | publisher | - |
dc.address | Academic Center for Computing and Media Studies, Kyoto University | en |
dc.address.alternative | 学術情報メディアセンター | ja |
dcterms.accessRights | open access | - |
出現コレクション: | 学術雑誌掲載論文等 |

このリポジトリに保管されているアイテムはすべて著作権により保護されています。