このアイテムのアクセス数: 207

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
ATSIP.2015.5.pdf834.05 kBAdobe PDF見る/開く
完全メタデータレコード
DCフィールド言語
dc.contributor.authorR. Gomezen
dc.contributor.authorT. Kawaharaen
dc.contributor.authorK. Nakadaien
dc.contributor.alternative河原, 達也ja
dc.date.accessioned2017-03-03T02:09:15Z-
dc.date.available2017-03-03T02:09:15Z-
dc.date.issued2015-
dc.identifier.issn2048-7703-
dc.identifier.urihttp://hdl.handle.net/2433/218589-
dc.description.abstractThe paper addresses a robust wavelet-based speech enhancement for automatic speech recognition in reverberant and noisy conditions. We propose a novel scheme in improving the speech, late reflection, and noise power estimates from the observed contaminated signal. The improved estimates are used to calculate theWiener gain in filtering the late reflections and additive noise. In the proposed scheme, optimization of the wavelet family and its parameters is conducted using an acoustic model (AM). In the offline mode, the optimal wavelet family is selected separately for the speech, late reflections, and background noise based on the AM likelihood. Then, the parameters of the selected wavelet family are optimized specifically for each signal subspace. As a result we can use a wavelet sensitive to the speech, late reflection, and the additive noise, which can independently and accurately estimate these signals directly from an observed contaminated signal. For speech recognition, the most suitable wavelet is identified from the pre-stored wavelets, and wavelet-domain filtering is conducted to the noisy and reverberant speech signal. Experimental evaluations using real reverberant data demonstrate the effectiveness and robustness of the proposed method.en
dc.format.mimetypeapplication/pdf-
dc.language.isoeng-
dc.publisherCambridge University Press (CUP)en
dc.rights© The Authors, 2015. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/3.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited. doi:10.1017/ATSIP.2015.5en
dc.subjectAutomatic speech recognitionen
dc.subjectDereverberationen
dc.subjectRobustnessen
dc.titleOptimized wavelet-domain filtering under noisy and reverberant conditionsen
dc.typejournal article-
dc.type.niitypeJournal Article-
dc.identifier.jtitleAPSIPA Transactions on Signal and Information Processingen
dc.identifier.volume4-
dc.identifier.issuee3-
dc.identifier.spage1-
dc.identifier.epage12-
dc.relation.doi10.1017/ATSIP.2015.5-
dc.textversionpublisher-
dc.addressAcademic Center for Computing and Media Studies, Kyoto Universityen
dc.address.alternative学術情報メディアセンターja
dcterms.accessRightsopen access-
出現コレクション:学術雑誌掲載論文等

アイテムの簡略レコードを表示する

Export to RefWorks


出力フォーマット 


このリポジトリに保管されているアイテムはすべて著作権により保護されています。