ダウンロード数: 216
このアイテムのファイル:
ファイル | 記述 | サイズ | フォーマット | |
---|---|---|---|---|
IJCAI 2016_1476.pdf | 370.91 kB | Adobe PDF | 見る/開く |
タイトル: | A Robust Convex Formulations for Ensemble Clustering. |
著者: | Gao, Junning Yamada, Makoto Kaski, Samuel Mamitsuka, Hiroshi https://orcid.org/0000-0002-6607-5617 (unconfirmed) Zhu, Shanfeng Kambhampati, Subbarao |
著者名の別形: | 馬見塚, 拓 |
発行日: | Jul-2016 |
出版者: | AAAI Press・International Joint Conferences on Artificial Intelligence |
誌名: | Proceedings of the 25th International Joint Conference on Artificial Intelligence (IJCAI 2016) |
開始ページ: | 1476 |
終了ページ: | 1482 |
抄録: | We formulate ensemble clustering as a regularization problem over nuclear norm and cluster-wise group norm, and present an efficient optimization algorithm, which we call Robust Convex Ensemble Clustering (RCEC). A key feature of RCEC allows to remove anomalous cluster assignments obtained from component clustering methods by using the group-norm regularization. Moreover, the proposed method is convex and can find the globally optimal solution. We first showed that using synthetic data experiments, RCEC could learn stable cluster assignments from the input matrix including anomalous clusters. We then showed that RCEC outperformed state-of-the-art ensemble clustering methods by using real-world data sets. |
記述: | International Joint Conference on Artificial Intelligence , New York City , United States , 9-16 July . |
著作権等: | This is not the published version. Please cite only the published version. この論文は出版社版でありません。引用の際には出版社版をご確認ご利用ください。 |
URI: | http://hdl.handle.net/2433/219137 |
関連リンク: | https://www.ijcai.org/Proceedings/16/Papers/212.pdf http://ijcai-16.org/index.php/welcome/view/home |
出現コレクション: | 学術雑誌掲載論文等 |
このリポジトリに保管されているアイテムはすべて著作権により保護されています。