このアイテムのアクセス数: 581

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
ncomms15037.pdf1.95 MBAdobe PDF見る/開く
完全メタデータレコード
DCフィールド言語
dc.contributor.authorHorikawa, Tomoyasuen
dc.contributor.authorKamitani, Yukiyasuen
dc.contributor.alternative堀川, 友慈ja
dc.contributor.alternative神谷, 之康ja
dc.date.accessioned2017-05-23T06:52:20Z-
dc.date.available2017-05-23T06:52:20Z-
dc.date.issued2017-05-22-
dc.identifier.issn2041-1723-
dc.identifier.urihttp://hdl.handle.net/2433/224942-
dc.description脳から深層ニューラルネットワークへの信号変換による脳内イメージ解読--「脳-機械融合知能」の実現に向けて--. 京都大学プレスリリース. 2017-05-22.ja
dc.description.abstractObject recognition is a key function in both human and machine vision. While brain decoding of seen and imagined objects has been achieved, the prediction is limited to training examples. We present a decoding approach for arbitrary objects using the machine vision principle that an object category is represented by a set of features rendered invariant through hierarchical processing. We show that visual features, including those derived from a deep convolutional neural network, can be predicted from fMRI patterns, and that greater accuracy is achieved for low-/high-level features with lower-/higher-level visual areas, respectively. Predicted features are used to identify seen/imagined object categories (extending beyond decoder training) from a set of computed features for numerous object images. Furthermore, decoding of imagined objects reveals progressive recruitment of higher-to-lower visual representations. Our results demonstrate a homology between human and machine vision and its utility for brain-based information retrieval.en
dc.format.mimetypeapplication/pdf-
dc.language.isoeng-
dc.publisherSpringer Natureen
dc.rights©The Author(s) 2017. This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/en
dc.titleGeneric decoding of seen and imagined objects using hierarchical visual features.en
dc.typejournal article-
dc.type.niitypeJournal Article-
dc.identifier.jtitleNature communicationsen
dc.identifier.volume8-
dc.relation.doi10.1038/ncomms15037-
dc.textversionpublisher-
dc.identifier.artnum15037-
dc.identifier.pmid28530228-
dc.relation.urlhttps://www.kyoto-u.ac.jp/ja/research-news/2017-05-22-4-
dcterms.accessRightsopen access-
出現コレクション:学術雑誌掲載論文等

アイテムの簡略レコードを表示する

Export to RefWorks


出力フォーマット 


このリポジトリに保管されているアイテムはすべて著作権により保護されています。