このアイテムのアクセス数: 197

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
ptep_ptx081.pdf435.35 kBAdobe PDF見る/開く
完全メタデータレコード
DCフィールド言語
dc.contributor.authorFukuma, Masafumien
dc.contributor.authorUmeda, Naoyaen
dc.contributor.alternative福間, 將文ja
dc.contributor.alternative梅田, 直弥ja
dc.date.accessioned2017-07-19T01:23:40Z-
dc.date.available2017-07-19T01:23:40Z-
dc.date.issued2017-07-14-
dc.identifier.issn2050-3911-
dc.identifier.urihttp://hdl.handle.net/2433/226454-
dc.description.abstractThe algorithm based on integration over Lefschetz thimbles is a promising method to resolve the sign problem for complex actions. However, this algorithm often meets a difficulty in actual Monte Carlo calculations because the configuration space is not easily explored due to the infinitely high potential barriers between different thimbles. In this paper, we propose to use the flow time of the antiholomorphic gradient flow as an auxiliary variable for the highly multimodal distribution. To illustrate this, we implement the parallel tempering method by taking the flow time as a tempering parameter. In this algorithm, we can take the maximum flow time to be sufficiently large such that the sign problem disappears there, and two separate modes are connected through configurations at small flow times. To exemplify that this algorithm does work, we investigate the (0 + 1)-dimensional massive Thirring model at finite density and show that our algorithm correctly reproduces the analytic results for large flow times such as T = 2.en
dc.format.mimetypeapplication/pdf-
dc.language.isoeng-
dc.publisherOxford University Press (OUP)en
dc.rights© The Author(s) 2017. Published by Oxford University Press on behalf of the Physical Society of Japan.en
dc.rightsThis is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. Funded by SCOAP3en
dc.subjectA22 Monte-Carlo simulationsen
dc.subjectB38 Lattice field theoriesen
dc.subjectD34 Lattice QCD calculations in nuclear physicsen
dc.titleParallel tempering algorithm for integration over Lefschetz thimblesen
dc.typejournal article-
dc.type.niitypeJournal Article-
dc.identifier.jtitleProgress of Theoretical and Experimental Physicsen
dc.identifier.volume2017-
dc.identifier.issue7-
dc.relation.doi10.1093/ptep/ptx081-
dc.textversionpublisher-
dc.identifier.artnum073B01-
dcterms.accessRightsopen access-
出現コレクション:学術雑誌掲載論文等

アイテムの簡略レコードを表示する

Export to RefWorks


出力フォーマット 


このリポジトリに保管されているアイテムはすべて著作権により保護されています。