このアイテムのアクセス数: 165
このアイテムのファイル:
ファイル | 記述 | サイズ | フォーマット | |
---|---|---|---|---|
j.proeng.2016.07.491.pdf | 862.38 kB | Adobe PDF | 見る/開く |
完全メタデータレコード
DCフィールド | 値 | 言語 |
---|---|---|
dc.contributor.author | Tsujikura, Hiroki | en |
dc.contributor.author | Tanaka, Kohji | en |
dc.contributor.author | Tachikawa, Yasuto | en |
dc.contributor.alternative | 立川, 康人 | ja |
dc.date.accessioned | 2017-07-20T01:59:56Z | - |
dc.date.available | 2017-07-20T01:59:56Z | - |
dc.date.issued | 2016 | - |
dc.identifier.issn | 1877-7058 | - |
dc.identifier.uri | http://hdl.handle.net/2433/226507 | - |
dc.description | 12th International Conference on Hydroinformatics (HIC 2016) - Smart Water for the Future | en |
dc.description.abstract | The purpose of this study is to apply a non-linear filtering methods (Particle Filter) to a flood prediction system to improve the accuracy of flood water level. The uniqueness of the flood prediction system is to estimates the water level considering temporal change of the sandbar collapse at the backwater reach in the Kumano River. A one dimensional hydrodynamic model of unsteady flow was applied to predict the longitudinal profile of the water level at the reach affected by the sandbar collapse of the river mouth. It was shown that the bed deformation height as one of the state quantities could explain the timing of the sandbar collapse. Other state quantities are discharge at the upstream and the lateral discharge from the branches. These were given from the results of a distributed rainfall-runoff model. Error coefficients are included to update the state quantities by using filtering method with the observed water level. The water level at the objective river of the study was predicted by using the updated initial condition after the filtering, which showed a good agreement with observed water level. It is concluded that the precision of the flood prediction system combined the water surface level prediction model are improved more than before. | en |
dc.format.mimetype | application/pdf | - |
dc.language.iso | eng | - |
dc.publisher | Elsevier BV | en |
dc.rights | © 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). | en |
dc.subject | flood prediction | en |
dc.subject | sandbar collapse | en |
dc.subject | non-linear filtering technique | en |
dc.subject | unscented Kalman filter | en |
dc.subject | particle filter | en |
dc.subject | bed deformation | en |
dc.title | Development of a Water Surface Level Prediction Method Affected by River Mouth Sandbar Collapse | en |
dc.type | journal article | - |
dc.type.niitype | Journal Article | - |
dc.identifier.jtitle | Procedia Engineering | en |
dc.identifier.volume | 154 | - |
dc.identifier.spage | 1349 | - |
dc.identifier.epage | 1358 | - |
dc.relation.doi | 10.1016/j.proeng.2016.07.491 | - |
dc.textversion | publisher | - |
dcterms.accessRights | open access | - |
出現コレクション: | 学術雑誌掲載論文等 |

このリポジトリに保管されているアイテムはすべて著作権により保護されています。