このアイテムのアクセス数: 3419
このアイテムのファイル:
ファイル | 記述 | サイズ | フォーマット | |
---|---|---|---|---|
j.ets_21(2)_220..pdf | 687.92 kB | Adobe PDF | 見る/開く |
完全メタデータレコード
DCフィールド | 値 | 言語 |
---|---|---|
dc.contributor.author | Lu, T. H. Owen | en |
dc.contributor.author | Huang, Q. Y. Anna | en |
dc.contributor.author | Huang, H. C. Jeff | en |
dc.contributor.author | Lin, Q. J. Albert | en |
dc.contributor.author | Ogata, Hiroaki | en |
dc.contributor.author | Yang, H. J. Stephen | en |
dc.contributor.alternative | 緒方, 広明 | ja |
dc.date.accessioned | 2018-05-31T07:27:36Z | - |
dc.date.available | 2018-05-31T07:27:36Z | - |
dc.date.issued | 2018-04 | - |
dc.identifier.issn | 1176-3647 | - |
dc.identifier.uri | http://hdl.handle.net/2433/231307 | - |
dc.description.abstract | Blended learning combines online digital resources with traditional classroom activities and enables students to attain higher learning performance through well-defined interactive strategies involving online and traditional learning activities. Learning analytics is a conceptual framework and as a part of our Precision education used to analyze and predict students' performance and provide timely interventions based on student learning profiles. This study applied learning analytics and educational big data approaches for the early prediction of students' final academic performance in a blended Calculus course. Real data with 21 variables were collected from the proposed course, consisting of video-viewing behaviors, out-of-class practice behaviors, homework and quiz scores, and after-school tutoring. This study applied principal component regression to predict students' final academic performance. The experimental results show that students' final academic performance could be predicted when only one-third of the semester had elapsed. In addition, we identified seven critical factors that affect students' academic performance, consisting of four online factors and three traditional factors. The results showed that the blended data set combining online and traditional critical factors had the highest predictive performance. | en |
dc.format.mimetype | application/pdf | - |
dc.language.iso | eng | - |
dc.publisher | International Forum of Educational Technology & Society | en |
dc.rights | This article of the Journal of Educational Technology & Society is available under Creative Commons CC-BY-ND-NC 3.0 license (https://creativecommons.org/licenses/by-nc-nd/3.0/). | en |
dc.subject | Learning analytics | en |
dc.subject | Educational big data | en |
dc.subject | MOOCs | en |
dc.subject | Blended learning | en |
dc.subject | Principal component regression | en |
dc.title | Applying Learning Analytics for the Early Prediction of Students' Academic Performance in Blended Learning | en |
dc.type | journal article | - |
dc.type.niitype | Journal Article | - |
dc.identifier.jtitle | Educational Technology & Society | en |
dc.identifier.volume | 21 | - |
dc.identifier.issue | 2 | - |
dc.identifier.spage | 220 | - |
dc.identifier.epage | 232 | - |
dc.relation.doi | 10.30191/ETS.201804_21(2).0019 | - |
dc.textversion | publisher | - |
dc.address | Department of Computer Science and Information Engineering, National Central University | en |
dc.address | Department of Computer Science and Information Engineering, National Central University | en |
dc.address | Department of Computer Science and Information Engineering, Hwa Hsia University of Technology | en |
dc.address | Department of Computer Science and Information Engineering, National Central University | en |
dc.address | Graduate School of Informatics, Kyoto University | en |
dc.address | Department of Computer Science and Information Engineering, National Central University | en |
dc.relation.url | http://www.jstor.org/stable/26388400 | - |
dcterms.accessRights | open access | - |
dc.identifier.pissn | 1176-3647 | - |
dc.identifier.eissn | 1436-4522 | - |
出現コレクション: | 学術雑誌掲載論文等 |

このリポジトリに保管されているアイテムはすべて著作権により保護されています。