このアイテムのアクセス数: 3419

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
j.ets_21(2)_220..pdf687.92 kBAdobe PDF見る/開く
完全メタデータレコード
DCフィールド言語
dc.contributor.authorLu, T. H. Owenen
dc.contributor.authorHuang, Q. Y. Annaen
dc.contributor.authorHuang, H. C. Jeffen
dc.contributor.authorLin, Q. J. Alberten
dc.contributor.authorOgata, Hiroakien
dc.contributor.authorYang, H. J. Stephenen
dc.contributor.alternative緒方, 広明ja
dc.date.accessioned2018-05-31T07:27:36Z-
dc.date.available2018-05-31T07:27:36Z-
dc.date.issued2018-04-
dc.identifier.issn1176-3647-
dc.identifier.urihttp://hdl.handle.net/2433/231307-
dc.description.abstractBlended learning combines online digital resources with traditional classroom activities and enables students to attain higher learning performance through well-defined interactive strategies involving online and traditional learning activities. Learning analytics is a conceptual framework and as a part of our Precision education used to analyze and predict students' performance and provide timely interventions based on student learning profiles. This study applied learning analytics and educational big data approaches for the early prediction of students' final academic performance in a blended Calculus course. Real data with 21 variables were collected from the proposed course, consisting of video-viewing behaviors, out-of-class practice behaviors, homework and quiz scores, and after-school tutoring. This study applied principal component regression to predict students' final academic performance. The experimental results show that students' final academic performance could be predicted when only one-third of the semester had elapsed. In addition, we identified seven critical factors that affect students' academic performance, consisting of four online factors and three traditional factors. The results showed that the blended data set combining online and traditional critical factors had the highest predictive performance.en
dc.format.mimetypeapplication/pdf-
dc.language.isoeng-
dc.publisherInternational Forum of Educational Technology & Societyen
dc.rightsThis article of the Journal of Educational Technology & Society is available under Creative Commons CC-BY-ND-NC 3.0 license (https://creativecommons.org/licenses/by-nc-nd/3.0/).en
dc.subjectLearning analyticsen
dc.subjectEducational big dataen
dc.subjectMOOCsen
dc.subjectBlended learningen
dc.subjectPrincipal component regressionen
dc.titleApplying Learning Analytics for the Early Prediction of Students' Academic Performance in Blended Learningen
dc.typejournal article-
dc.type.niitypeJournal Article-
dc.identifier.jtitleEducational Technology & Societyen
dc.identifier.volume21-
dc.identifier.issue2-
dc.identifier.spage220-
dc.identifier.epage232-
dc.relation.doi10.30191/ETS.201804_21(2).0019-
dc.textversionpublisher-
dc.addressDepartment of Computer Science and Information Engineering, National Central Universityen
dc.addressDepartment of Computer Science and Information Engineering, National Central Universityen
dc.addressDepartment of Computer Science and Information Engineering, Hwa Hsia University of Technologyen
dc.addressDepartment of Computer Science and Information Engineering, National Central Universityen
dc.addressGraduate School of Informatics, Kyoto Universityen
dc.addressDepartment of Computer Science and Information Engineering, National Central Universityen
dc.relation.urlhttp://www.jstor.org/stable/26388400-
dcterms.accessRightsopen access-
dc.identifier.pissn1176-3647-
dc.identifier.eissn1436-4522-
出現コレクション:学術雑誌掲載論文等

アイテムの簡略レコードを表示する

Export to RefWorks


出力フォーマット 


このリポジトリに保管されているアイテムはすべて著作権により保護されています。