ダウンロード数: 83
このアイテムのファイル:
ファイル | 記述 | サイズ | フォーマット | |
---|---|---|---|---|
2005-05.pdf | 1.36 MB | Adobe PDF | 見る/開く |
タイトル: | Spectral divide-and-conquer algorithms for matrix eigenvalue problems (Fusion of theory and practice in applied mathematics and computational science) |
著者: | Nakatsukasa, Yuji |
著者名の別形: | 中務, 佑治 |
発行日: | Nov-2016 |
出版者: | 京都大学数理解析研究所 |
誌名: | 数理解析研究所講究録 |
巻: | 2005 |
開始ページ: | 43 |
終了ページ: | 55 |
抄録: | Conventional algorithms for the (symmetric or non-symmetric) eigenvalue decomposition and the singular value decomposition (SVD) are based on initially reducing the matrix to a condensed (tridiagonal, Hessenberg or bidiagonal) form. Unfortunately, they are not optimal in view of recent trends in computer architectures, which require minimizing communication along with the arithmetic cost. With collaborators thc author has been developing spectral divide-and-conquer algorithms, which can achieve both requirements. Spectral divide-and-conquer algorithms recursively decouple the problem into two smaller subproblems. This report summarizes the developments thus far and gives an overview of spectral divide-and-conquer algorithms for eigenvalue problems and the SVD, and point to ongoing directions. A large bulk of this report consists of collaborations with Nicholas J. Higham [19] and Roland W. Freund [20]. |
URI: | http://hdl.handle.net/2433/231511 |
出現コレクション: | 2005 応用数理と計算科学における理論と応用の融合 |
このリポジトリに保管されているアイテムはすべて著作権により保護されています。