このアイテムのアクセス数: 79
このアイテムのファイル:
ファイル | 記述 | サイズ | フォーマット | |
---|---|---|---|---|
2009-09.pdf | 1.48 MB | Adobe PDF | 見る/開く |
タイトル: | KPZ equation with fractional derivatives of white noise (Mathematical Analysis of Viscous Incompressible Fluid) |
著者: | Hoshino, Masato |
著者名の別形: | 星野, 壮登 |
発行日: | Dec-2016 |
出版者: | 京都大学数理解析研究所 |
誌名: | 数理解析研究所講究録 |
巻: | 2009 |
開始ページ: | 105 |
終了ページ: | 123 |
抄録: | In this paper, we consider the KPZ equation driven by space-time white noise replaced with its fractional derivatives of order $gamma$>0 in spatial variable. A well-posedness theory for the KPZ equation is established by Hairer [3] as an application of the theory of regularity structures. Our aim is to see to what extent his theory works if noises become rougher. We can expect that his theory works if and only if $gamma$<1/2. However, we show that the renormalization like (partial_{x}h)^{2}-infty is well-posed only if $gamma$<1/4. |
URI: | http://hdl.handle.net/2433/231567 |
出現コレクション: | 2009 非圧縮性粘性流体の数理解析 |

このリポジトリに保管されているアイテムはすべて著作権により保護されています。