このアイテムのアクセス数: 72

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
2009-10.pdf942.92 kBAdobe PDF見る/開く
タイトル: Partial regularity and extension of solutions to the Navier-Stokes equations (Mathematical Analysis of Viscous Incompressible Fluid)
著者: Takahashi, Go
著者名の別形: 高橋, 剛
発行日: Dec-2016
出版者: 京都大学数理解析研究所
誌名: 数理解析研究所講究録
巻: 2009
開始ページ: 124
終了ページ: 133
抄録: It is quite well-known that we cannot assure the existence of global-in-time solutions to the Navier-Stokes equations for large initial data, but we have local-in-time solutions at least. The purpose of this talk is to get another time extension criterion for that local-intime solution. Specifically, We work on smooth classical solutions which satisfy so called Leray-Hopf class on mathbb{R}^{n}times(0, T), and then establish an time-extension criterion beyond T by estimating a sort of Morrey type functional of solutions. A key idea here is to utilize the $epsilon$-regularity argument which has been the critical part of the theory of suitable weak solutions. We note that this article is based on the author s recent work [23] and also contains similar results for bounded domains.
URI: http://hdl.handle.net/2433/231568
出現コレクション:2009 非圧縮性粘性流体の数理解析

アイテムの詳細レコードを表示する

Export to RefWorks


出力フォーマット 


このリポジトリに保管されているアイテムはすべて著作権により保護されています。