このアイテムのアクセス数: 72
このアイテムのファイル:
ファイル | 記述 | サイズ | フォーマット | |
---|---|---|---|---|
2009-10.pdf | 942.92 kB | Adobe PDF | 見る/開く |
タイトル: | Partial regularity and extension of solutions to the Navier-Stokes equations (Mathematical Analysis of Viscous Incompressible Fluid) |
著者: | Takahashi, Go |
著者名の別形: | 高橋, 剛 |
発行日: | Dec-2016 |
出版者: | 京都大学数理解析研究所 |
誌名: | 数理解析研究所講究録 |
巻: | 2009 |
開始ページ: | 124 |
終了ページ: | 133 |
抄録: | It is quite well-known that we cannot assure the existence of global-in-time solutions to the Navier-Stokes equations for large initial data, but we have local-in-time solutions at least. The purpose of this talk is to get another time extension criterion for that local-intime solution. Specifically, We work on smooth classical solutions which satisfy so called Leray-Hopf class on mathbb{R}^{n}times(0, T), and then establish an time-extension criterion beyond T by estimating a sort of Morrey type functional of solutions. A key idea here is to utilize the $epsilon$-regularity argument which has been the critical part of the theory of suitable weak solutions. We note that this article is based on the author s recent work [23] and also contains similar results for bounded domains. |
URI: | http://hdl.handle.net/2433/231568 |
出現コレクション: | 2009 非圧縮性粘性流体の数理解析 |

このリポジトリに保管されているアイテムはすべて著作権により保護されています。