このアイテムのアクセス数: 0

このアイテムのファイル:
このアイテムに関連するファイルはありません。
完全メタデータレコード
DCフィールド言語
dc.contributor.authorJarossay, Daviden
dc.date.accessioned2018-06-11T02:38:48Z-
dc.date.available2018-06-11T02:38:48Z-
dc.date.issued2017-01-
dc.identifier.issn1880-2818-
dc.identifier.urihttp://hdl.handle.net/2433/231675-
dc.description.abstractThis is a review of our study of the crystalline pro-umipotent fundamental groupoid of mathrm{I}mathrm{P}^{1}-({0, infty}cup$mu$_{N}) ([Jn], nin{1, ldots , 12 This review is restricted to the parts I and II of this study ([Jn], nin{1, ldots , 6 and to N=1. The part I ([JI], [J2], [J3]) is an explicit computation of the Frobenius. The part II ([J4], [J5], [J6]) is an explicit algebraic study of p-adic multiple zeta values, which are associated with the Frobenius. The theory is centered around the notion of harmonic Ihara action, defined in [J2], [J3]. The harmonic Ihara action is connected to the usual Ihara action, which is a byproduct of a motivic Galois action ; it has three different incarnations related to each other by "comparison " maps ; it enables to express our explicit formulas for the Frobenius, which relate p-adic multiple zeta values and certain sequences of multiple harmonic sums to each other ; it then also enables to understand jointly the algebraic properties of these two objects. We try to emphasize the ideas and the philosophy of this work. We review its context and its motivations (§1) and, after a few technical preliminaries (§2), our general strategy (S3). We state most of the main results of part I (§4) and of part II (§5), and we also summarize and motivate the methods of the proofs. We conclude on the main messages of the theory (§6).en
dc.language.isoeng-
dc.publisher京都大学数理解析研究所ja
dc.rights未許諾のため本文はありません。ja
dc.subjectperiodsen
dc.subjectpro-unipotent fundamental groupoiden
dc.subjectiterated integralsen
dc.subjectcrystaline Frobeniusen
dc.subjectunipotent F-isocrystalsen
dc.subjectthe projective line minus three pointsen
dc.subjectp-adic multiple zeta valuesen
dc.subjectharmonic Ihara actionen
dc.subjectmultiple harmonic sumsen
dc.subjectfinite multiple zeta valuesen
dc.subjectdouble shuffle relationsen
dc.subject.ndc410-
dc.titleAn explicit theroy of $pi_{1}^{mathrm{un,crys}}(mathbb{P}^{1}-{0,1,infty})$ : summary of parts I and II (Various Aspects of Multiple Zeta Value)en
dc.typedepartmental bulletin paper-
dc.type.niitypeDepartmental Bulletin Paper-
dc.identifier.ncidAN00061013-
dc.identifier.jtitle数理解析研究所講究録ja
dc.identifier.volume2015-
dc.identifier.spage94-
dc.identifier.epage139-
dc.textversionnone-
dc.sortkey09-
dc.addressInstitut de Recherche Mathematique Avancee, Universite de Strasbourgen
dcterms.accessRightsmetadata only access-
出現コレクション:2015 多重ゼータ値の諸相

アイテムの簡略レコードを表示する

Export to RefWorks


出力フォーマット 


このリポジトリに保管されているアイテムはすべて著作権により保護されています。