ダウンロード数: 90
このアイテムのファイル:
ファイル | 記述 | サイズ | フォーマット | |
---|---|---|---|---|
2028-02.pdf | 1.51 MB | Adobe PDF | 見る/開く |
完全メタデータレコード
DCフィールド | 値 | 言語 |
---|---|---|
dc.contributor.author | Jaerisch, Johannes | en |
dc.contributor.author | Sumi, Hiroki | en |
dc.contributor.alternative | 角, 大輝 | ja |
dc.contributor.transcription | [ヨミ等確認中] | - |
dc.contributor.transcription | スミ, ヒロキ | - |
dc.date.accessioned | 2018-06-11T02:39:19Z | - |
dc.date.available | 2018-06-11T02:39:19Z | - |
dc.date.issued | 2017-05 | - |
dc.identifier.issn | 1880-2818 | - |
dc.identifier.uri | http://hdl.handle.net/2433/231836 | - |
dc.description.abstract | We consider hyperbolic random complex dynamical systems on the Riemann sphere with separating condition and multiple rmnimal sets. We investigate the Hölder regularity of the function T of the probability of tending to one minimal set, the partial derivatives of T with respect to the probability parameters, which can be regarded as complex analogues of the Takagi function, and the higher partial derivatives C of T. Our main result gives a dynamical description of the pointwise Hölder exponents of T and C, which allows us todetermine the spectrum of pointwise Hölder exponents by employing the multifractal formalism in ergodic theory. Also, we prove that the bottom of the spectrum $alpha$_{-} is strictly less than 1, which allows us to show that the averaged system acts chaotically on the Banach space C^{ $alpha$} of $alpha$-Hölder continuous functions for every $alpha$in($alpha$_{-}, 1) , though the averaged system behaves very mildly (e.g. we have spectral gaps) on C^{ $beta$} for small $beta$>0. | en |
dc.format.mimetype | application/pdf | - |
dc.language.iso | eng | - |
dc.publisher | 京都大学数理解析研究所 | ja |
dc.subject | 37H10 | en |
dc.subject | 37F15 | en |
dc.subject | Complex dynamical systems | en |
dc.subject | rational semigroups | en |
dc.subject | random complex dynamics | en |
dc.subject | multifractal formalism | en |
dc.subject | Julia set | en |
dc.subject | random iteration | en |
dc.subject.ndc | 410 | - |
dc.title | MUTIFRACTAL ANALYSIS FOR POINTWISE HOLDER EXPONENTS OF THE COMPLEX TAKAGI FUNCTIONS IN RANDOM COMPLEX DYNAMICS (The Theory of Random Dynamical Systems and Its Applications) | en |
dc.type | departmental bulletin paper | - |
dc.type.niitype | Departmental Bulletin Paper | - |
dc.identifier.ncid | AN00061013 | - |
dc.identifier.jtitle | 数理解析研究所講究録 | ja |
dc.identifier.volume | 2028 | - |
dc.identifier.spage | 9 | - |
dc.identifier.epage | 20 | - |
dc.textversion | publisher | - |
dc.sortkey | 02 | - |
dc.address | Department of Mathematics, Faculty of Science and Engineering, Shimane University | en |
dc.address | Department of Mathematics, Graduate School of Science, Osaka University | en |
dc.address.alternative | 島根大学総合理工学部 | ja |
dc.address.alternative | 大阪大学理学研究科 | ja |
dcterms.accessRights | open access | - |
出現コレクション: | 2028 ランダム力学系理論とその応用 |
このリポジトリに保管されているアイテムはすべて著作権により保護されています。