このアイテムのアクセス数: 4

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
jbc.M117.814392.pdf2.47 MBAdobe PDF見る/開く
タイトル: Cystine uptake through the cystine/glutamate antiporter xCT triggers glioblastoma cell death under glucose deprivation
著者: Goji, Takeo
Takahara, Kazuhiko
Negisjhi, Manabu
Katoh, Hironori  kyouindb  KAKEN_id
著者名の別形: 高原, 和彦
根岸, 学
加藤, 裕教
キーワード: amino acid transport
cell death
glioblastoma
glucose
reactive oxygen species (ROS)
cystine
発行日: 1-Dec-2017
出版者: American Society for Biochemistry and Molecular Biolog (ASBMB)
誌名: Journal of Biological Chemistry
巻: 292
号: 48
開始ページ: 19721
終了ページ: 19732
抄録: Oncogenic signaling in cancer cells alters glucose uptake and utilization to supply sufficient energy and biosynthetic intermediates for survival and sustained proliferation. Oncogenic signaling also prevents oxidative stress and cell death caused by increased production of reactive oxygen species. However, elevated glucose metabolism in cancer cells, especially in glioblastoma, results in the cells becoming sensitive to glucose deprivation (i.e. in high glucose dependence), which rapidly induces cell death. However, the precise mechanism of this type of cell death remains unknown. Here, we report that glucose deprivation alone does not trigger glioblastoma cell death. We found that, for cell death to occur in glucose-deprived glioblastoma cells, cystine and glutamine also need to be present in culture media. We observed that cystine uptake through the cystine/glutamate antiporter xCT under glucose deprivation rapidly induces NADPH depletion, reactive oxygen species accumulation, and cell death. We conclude that although cystine uptake is crucial for production of antioxidant glutathione in cancer cells its transport through xCT also induces oxidative stress and cell death in glucose-deprived glioblastoma cells. Combining inhibitors targeting cancer-specific glucose metabolism with cystine and glutamine treatment may offer a therapeutic approach for glioblastoma tumors exhibiting high xCT expression.
著作権等: This research was originally published in the Journal of Biological Chemistry. [Takeo Goji, Kazuhiko Takahara, Manabu Negishi, Hironori Katoh.Cystine uptake through the cystine/glutamate antiporter xCT triggers glioblastoma cell death under glucose deprivation. J. Biol. Chem. 2017; 292:19721-19732]. © the American Society for Biochemistry and Molecular Biology.
The full-text file will be made open to the public on 1 December 2018 in accordance with publisher's 'Terms and Conditions for Self-Archiving'.
URI: http://hdl.handle.net/2433/231984
DOI(出版社版): 10.1074/jbc.M117.814392
PubMed ID: 29038291
出現コレクション:学術雑誌掲載論文等

アイテムの詳細レコードを表示する

Export to RefWorks


出力フォーマット 


このリポジトリに保管されているアイテムはすべて著作権により保護されています。