ダウンロード数: 284

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
j.ymeth.2018.04.026.pdf1.65 MBAdobe PDF見る/開く
完全メタデータレコード
DCフィールド言語
dc.contributor.authorWalinda, Eriken
dc.contributor.authorMorimoto, Daichien
dc.contributor.authorSugase, Kenjien
dc.contributor.alternative森本, 大智ja
dc.contributor.alternative菅瀬, 謙治ja
dc.date.accessioned2018-11-14T05:37:35Z-
dc.date.available2018-11-14T05:37:35Z-
dc.date.issued2018-09-15-
dc.identifier.issn1046-2023-
dc.identifier.urihttp://hdl.handle.net/2433/235168-
dc.description.abstractAmong the tools of structural biology, NMR spectroscopy is unique in that it not only derives a static three-dimensional structure, but also provides an atomic-level description of the local fluctuations and global dynamics around this static structure. A battery of NMR experiments is now available to probe the motions of proteins and nucleic acids over the whole biologically relevant timescale from picoseconds to hours. Here we focus on one of these methods, relaxation dispersion, which resolves dynamics on the micro- to millisecond timescale. Key biological processes that occur on this timescale include enzymatic catalysis, ligand binding, and local folding. In other words, relaxation-dispersion-resolved dynamics are often closely related to the function of the molecule and therefore highly interesting to the structural biochemist. With an astounding sensitivity of ∼0.5%, the method detects low-population excited states that are invisible to any other biophysical method. The kinetics of the exchange between the ground state and excited states are quantified in the form of the underlying exchange rate, while structural information about the invisible excited state is obtained in the form of its chemical shift. Lastly, the population of the excited state can be derived. This diversity in the information that can be obtained makes relaxation dispersion an excellent method to study the detailed mechanisms of conformational transitions and molecular interactions. Here we describe the two branches of relaxation dispersion, R₂ and R₁ρ, discussing their applicability, similarities, and differences, as well as recent developments in pulse sequence design and data processing.en
dc.format.mimetypeapplication/pdf-
dc.language.isoeng-
dc.publisherElsevier BVen
dc.rights© 2018. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/en
dc.rightsThe full-text file will be made open to the public on 15 September 2019 in accordance with publisher's 'Terms and Conditions for Self-Archiving'.en
dc.rightsこの論文は出版社版でありません。引用の際には出版社版をご確認ご利用ください。ja
dc.rightsThis is not the published version. Please cite only the published version.en
dc.subjectNMR spectroscopyen
dc.subjectProtein dynamicsen
dc.subjectDNA/RNA dynamicsen
dc.subjectChemical exchangeen
dc.subjectConformational exchangeen
dc.subjectBiomolecular interactionsen
dc.subjectRelaxation dispersionen
dc.titleResolving biomolecular motion and interactions by R₂ and R₁ρ relaxation dispersion NMRen
dc.typejournal article-
dc.type.niitypeJournal Article-
dc.identifier.jtitleMethodsen
dc.identifier.volume148-
dc.identifier.spage28-
dc.identifier.epage38-
dc.relation.doi10.1016/j.ymeth.2018.04.026-
dc.textversionauthor-
dc.addressDepartment of Molecular and Cellular Physiology, Graduate School of Medicine, Kyoto Universityen
dc.addressDepartment of Molecular Engineering, Graduate School of Engineering, Kyoto Universityen
dc.addressDepartment of Molecular Engineering, Graduate School of Engineering, Kyoto Universityen
dc.identifier.pmid29704666-
dcterms.accessRightsopen access-
datacite.date.available2019-09-15-
dc.identifier.pissn1046-2023-
dc.identifier.eissn1095-9130-
出現コレクション:学術雑誌掲載論文等

アイテムの簡略レコードを表示する

Export to RefWorks


出力フォーマット 


このリポジトリに保管されているアイテムはすべて著作権により保護されています。