このアイテムのアクセス数: 219
このアイテムのファイル:
ファイル | 記述 | サイズ | フォーマット | |
---|---|---|---|---|
2475-8876.12059.pdf | 797.31 kB | Adobe PDF | 見る/開く |
完全メタデータレコード
DCフィールド | 値 | 言語 |
---|---|---|
dc.contributor.author | Tamura, Takuya | en |
dc.contributor.author | Ohsaki, Makoto | en |
dc.contributor.author | Takagi, Jiro | en |
dc.contributor.alternative | 田村, 拓也 | ja |
dc.contributor.alternative | 大﨑, 純 | ja |
dc.date.accessioned | 2019-01-21T07:32:46Z | - |
dc.date.available | 2019-01-21T07:32:46Z | - |
dc.date.issued | 2018-10 | - |
dc.identifier.issn | 2475-8876 | - |
dc.identifier.uri | http://hdl.handle.net/2433/236063 | - |
dc.description | Part of this paper has been presented at OPTIS2016, Japan Soc. Mech. Eng., 2016; Annual Meeting of Architectural Inst. of Japan (AIJ), 2017; AIJ Kinki Chapter Research Meeting, 2017; 40th Symp. On Comp. Tech. of Information, Systems and Appl., AIJ, 2017. | en |
dc.description.abstract | A method is presented for optimal placement of braces of plane frames using machine learning. The frame is subjected to static horizontal loads representing seismic loads. We consider the process of seismic retrofit by attaching braces. Therefore, the maximum value of additional stresses in the existing beams and columns and the maximum interstory drift angle are incorporated in the optimization problem. Characteristics of approximate optimal solutions and nonoptimal solutions are extracted using machine learning based on support vector machine and binary decision tree. Convolution and pooling are used for defining the features characterizing the solutions while reducing the number of variables. Optimization is carried out using a heuristic algorithm called simulated annealing based on local search. It is shown in the numerical examples that the computational cost is successfully reduced by avoiding costly structural analysis for a solution judged by machine learning as nonoptimal, and the important features in approximate optimal and nonoptimal solutions are identified. | en |
dc.format.mimetype | application/pdf | - |
dc.language.iso | eng | - |
dc.publisher | Wiley | en |
dc.publisher | Architectural Institute of Japan | en |
dc.rights | © 2018 The Authors. Japan Architectural Review published by John Wiley & Sons Australia, Ltd on behalf of Architectural Institute of Japan. This is an open access article under the terms of the Creative Commons Attribution‐NonCommercial‐NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made. | en |
dc.subject | binary decision tree | en |
dc.subject | braced frame | en |
dc.subject | machine learning | en |
dc.subject | optimization | en |
dc.subject | simulated annealing | en |
dc.subject | support vector machine | en |
dc.title | Machine learning for combinatorial optimization of brace placement of steel frames | en |
dc.type | journal article | - |
dc.type.niitype | Journal Article | - |
dc.identifier.jtitle | Japan Architectural Review | en |
dc.identifier.volume | 1 | - |
dc.identifier.issue | 4 | - |
dc.identifier.spage | 419 | - |
dc.identifier.epage | 430 | - |
dc.relation.doi | 10.1002/2475-8876.12059 | - |
dc.textversion | publisher | - |
dc.address | Department of Architecture and Architectural Engineering, Kyoto University | en |
dc.address | Department of Architecture and Architectural Engineering, Kyoto University | en |
dc.address | Department of Architecture and Building Engineering, Tokyo Metropolitan University | en |
dcterms.accessRights | open access | - |
datacite.awardNumber | 16H03014 | - |
datacite.awardNumber | 16H04449 | - |
dc.identifier.eissn | 2475-8876 | - |
jpcoar.funderName | 日本学術振興会 | ja |
jpcoar.funderName | 日本学術振興会 | ja |
jpcoar.funderName.alternative | Japan Society for the Promotion of Science (JSPS) | en |
jpcoar.funderName.alternative | Japan Society for the Promotion of Science (JSPS) | en |
出現コレクション: | 学術雑誌掲載論文等 |

このリポジトリに保管されているアイテムはすべて著作権により保護されています。