このアイテムのアクセス数: 101

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
2037-02.pdf1.03 MBAdobe PDF見る/開く
完全メタデータレコード
DCフィールド言語
dc.contributor.author畔上, 秀幸ja
dc.contributor.alternativeAzegami, Hideyukien
dc.contributor.transcriptionアゼガミ, ヒデユキ-
dc.date.accessioned2019-03-07T05:44:25Z-
dc.date.available2019-03-07T05:44:25Z-
dc.date.issued2017-07-
dc.identifier.issn1880-2818-
dc.identifier.urihttp://hdl.handle.net/2433/236851-
dc.description.abstract本論文では, 偏微分方程式の境界値問題が定義された領域を設計対象にした領域変動型形状最適化問題における評価関数の2階微分の評価方法を示し, それを用いたNewton法に基づく解法(H^{1} Newton法)を提案する. 最初に, 有限次元空間上で制約付きの最適化問題に対する勾配法とNewton法について復習する. それらを基にして形状最適化問題に対する勾配法とNewton法を考える. 形状最適化問題に対する勾配法(H^{1}勾配法)は, 評価関数の領域変動に対するFréchet微分(形状微分)とH^{1}級関数空間上の強圧的な双1次形式を用いて定義されていた. H^{1} Newton法では, それらに2階Fréchet微分(形状Hesse形式)を追加して構成される.ja
dc.format.mimetypeapplication/pdf-
dc.language.isojpn-
dc.publisher京都大学数理解析研究所ja
dc.publisher.alternativeResearch Institute for Mathematical Sciences, Kyoto Universityen
dc.subject.ndc410-
dc.title形状最適化問題における評価関数の2階微分と$H^{1}$ Newton法 (現象解明に向けた数値解析学の新展開 II)ja
dc.title.alternativeSecond derivative of cost function and $H^{1}$ Newton method in shape optimization problem (Numerical Analysis : New Developments for Elucidating Interdisciplinary Problems II)en
dc.typedepartmental bulletin paper-
dc.type.niitypeDepartmental Bulletin Paper-
dc.identifier.ncidAN00061013-
dc.identifier.jtitle数理解析研究所講究録ja
dc.identifier.volume2037-
dc.identifier.spage5-
dc.identifier.epage16-
dc.textversionpublisher-
dc.sortkey02-
dc.address名古屋大学情報科学研究科ja
dc.address.alternativeGraduate School of Information Science, Nagoya Universityen
dcterms.accessRightsopen access-
dc.identifier.jtitle-alternativeRIMS Kokyurokuen
出現コレクション:2037 現象解明に向けた数値解析学の新展開 II

アイテムの簡略レコードを表示する

Export to RefWorks


出力フォーマット 


このリポジトリに保管されているアイテムはすべて著作権により保護されています。