このアイテムのアクセス数: 67
このアイテムのファイル:
ファイル | 記述 | サイズ | フォーマット | |
---|---|---|---|---|
2042-03.pdf | 1.5 MB | Adobe PDF | 見る/開く |
タイトル: | On local reflection of the properties of graphs with uncountable characteristics (Infinite Combinatorics and Forcing Theory) |
著者: | Fuchino, Sakaé |
著者名の別形: | 渕野, 昌 |
キーワード: | 03E35 03E55 03E65 03E75 05C63 graphs coloring number chromatic number Fodor-type Reflection Principle Rado's Conjecture Galvin's Conjecture |
発行日: | Jul-2017 |
出版者: | 京都大学数理解析研究所 |
誌名: | 数理解析研究所講究録 |
巻: | 2042 |
開始ページ: | 34 |
終了ページ: | 51 |
抄録: | We study the relationships between the properties of graphs: " of coloring number > $mu$" and " of chromatic number > $mu$" for a regular cardinal $mu$ in terms of set-theoretic reflection of these properties. We show that under certain conditions the non-reflection of the property "of coloring number > $mu$" of graphs of bounded cardinality implies the non-reflection of the property "of chromatic number > $mu$" The implication is proved by interpolating it by non-reflection of the properties which are related to generalized and/or modified forms of Fodor-type Reflection Principle, Strong Chang' s Conjecture, Rado s Conjecture and Galvin' s Conjecture. As an application of this result we show a non reflection theorem on chromatic number > $mu$ which partially covers the results in Shelah [11]. Further results in this line will be presented in Fuchino, Ottenbreit and Sakai [9]. |
URI: | http://hdl.handle.net/2433/236940 |
出現コレクション: | 2042 無限組合せ論と強制法理論 |

このリポジトリに保管されているアイテムはすべて著作権により保護されています。