このアイテムのアクセス数: 55

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
2049-11.pdf988.02 kBAdobe PDF見る/開く
完全メタデータレコード
DCフィールド言語
dc.contributor.authorCampesato, Jean-Baptisteen
dc.date.accessioned2019-03-07T05:45:00Z-
dc.date.available2019-03-07T05:45:00Z-
dc.date.issued2017-10-
dc.identifier.issn1880-2818-
dc.identifier.urihttp://hdl.handle.net/2433/237057-
dc.description.abstractThis note is an expanded version of a talk given during the conference Singularity theory of differential maps and ifs applications at the RIMS, Kyoto (December 6-9, 2016). We first state the definition and some properties of the arc-analytic equivalence which is an equivalence relation with no continuous moduli on Nash(i.e. real analytic and semialgebraic) function germs. It is a semialgebraic version of the blow-analytic equivalence of T.-C. Kuo. Then, we present an invariant of the arc-analytic equivalence which is constructed following the motivic zeta function of Denef-Loeser. Finally, we explain how to derive from it some classification results for Brieskorn polynomials and more generally for some weighted homogeneous polynomials.en
dc.format.mimetypeapplication/pdf-
dc.language.isoeng-
dc.publisher京都大学数理解析研究所ja
dc.publisher.alternativeResearch Institute for Mathematical Sciences, Kyoto Universityen
dc.subject.ndc410-
dc.titleOn some classification results of real singularities up to the arc-analytic equivalence (Singularity theory of differential maps and its applications)en
dc.typedepartmental bulletin paper-
dc.type.niitypeDepartmental Bulletin Paper-
dc.identifier.ncidAN00061013-
dc.identifier.jtitle数理解析研究所講究録ja
dc.identifier.volume2049-
dc.identifier.spage116-
dc.identifier.epage125-
dc.textversionpublisher-
dc.sortkey11-
dc.addressDepartment of Mathematics, Faculty of Science, Saitama Universityen
dc.address.alternative埼玉大学理学部ja
dcterms.accessRightsopen access-
dc.identifier.jtitle-alternativeRIMS Kokyurokuen
出現コレクション:2049 可微分写像の特異点論とその応用

アイテムの簡略レコードを表示する

Export to RefWorks


出力フォーマット 


このリポジトリに保管されているアイテムはすべて著作権により保護されています。