ダウンロード数: 72
このアイテムのファイル:
ファイル | 記述 | サイズ | フォーマット | |
---|---|---|---|---|
2050-02.pdf | 1.78 MB | Adobe PDF | 見る/開く |
タイトル: | COMPUTABLE QUOTIENT PRESENTATIONS OF MODELS OF ARITHMETIC AND SET THEORY (Mathematical Logic and Its Applications) |
著者: | Godziszewski, Michal Tomasz Hamkins, Joel David |
発行日: | Oct-2017 |
出版者: | 京都大学数理解析研究所 |
誌名: | 数理解析研究所講究録 |
巻: | 2050 |
開始ページ: | 9 |
終了ページ: | 23 |
抄録: | We prove various extensions of the Tennenbaum phenomenon to the case of computable quotient presentations of models of arithmetic and set theory. Specifically, no nonstandard model of arithmetic has a computable quotient presentation by a c.e. equivalence relation. No $Sigma$_{1}-sound nonstandard model of arithmetic has a computable quotient presentation by a co-c.e. equivalence relation. No nonstandard model of arithmetic in the language {+, cdot, leq} has a computably enumerable quotient presentation by any equivalence relation of any complexity. No model of ZFC or even much weaker set theories has a computable quotient presentation by any equivalence relation of any complexity. And similarly no nonstandard model of finite set theory has a computable quotient presentation. |
URI: | http://hdl.handle.net/2433/237066 |
出現コレクション: | 2050 数学基礎論とその応用 |
このリポジトリに保管されているアイテムはすべて著作権により保護されています。