このアイテムのアクセス数: 180

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
1751-8121_aaca41.pdf414.46 kBAdobe PDF見る/開く
完全メタデータレコード
DCフィールド言語
dc.contributor.authorDmitrašinović, Ven
dc.contributor.authorHudomal, Anaen
dc.contributor.authorShibayama, Mitsuruen
dc.contributor.authorSugita, Ayumuen
dc.contributor.alternative柴山, 允瑠ja
dc.date.accessioned2019-04-08T02:20:32Z-
dc.date.available2019-04-08T02:20:32Z-
dc.date.issued2018-08-03-
dc.identifier.issn1751-8113-
dc.identifier.urihttp://hdl.handle.net/2433/240754-
dc.description.abstractWe test numerically the recently proposed linear relationship between the scale-invariant period Ts.i.= T|E|³/², and the topology of an orbit, on several hundred planar Newtonian periodic three-body orbits. Here T is the period of an orbit, E is its energy, so that Ts.i. is the scale-invariant period, or, equivalently, the period at unit energy |E| = 1. All of these orbits have vanishing angular momentum and pass through a linear, equidistant configuration at least once. Such orbits are classified in ten algebraically well-defined sequences. Orbits in each sequence follow an approximate linear dependence of Ts.i., albeit with slightly different slopes and intercepts. The orbit with the shortest period in its sequence is called the 'progenitor': six distinct orbits are the progenitors of these ten sequences. We have studied linear stability of these orbits, with the result that 21 orbits are linearly stable, which includes all of the progenitors. This is consistent with the Birkhoff–Lewis theorem, which implies existence of infinitely many periodic orbits for each stable progenitor, and in this way explains the existence and ensures infinite extension of each sequence.en
dc.format.mimetypeapplication/pdf-
dc.language.isoeng-
dc.publisherIOP Publishingen
dc.rightsThis is an author-created, un-copyedited version of an article accepted for publication in Journal of Physics A: Mathematical and Theoretical. The publisher is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at https://doi.org/10.1088/1751-8121/aaca41.en
dc.rightsThe full-text file will be made open to the public on 22 June 2019 in accordance with publisher's 'Terms and Conditions for Self-Archiving'.en
dc.rightsThis is not the published version. Please cite only the published version.en
dc.rightsこの論文は出版社版でありません。引用の際には出版社版をご確認ご利用ください。ja
dc.titleLinear stability of periodic three-body orbits with zero angular momentum and topological dependence of Kepler's third law: a numerical testen
dc.typejournal article-
dc.type.niitypeJournal Article-
dc.identifier.jtitleJournal of Physics A: Mathematical and Theoreticalen
dc.identifier.volume51-
dc.identifier.issue31-
dc.relation.doi10.1088/1751-8121/aaca41-
dc.textversionauthor-
dc.identifier.artnum315101-
dc.addressInstitute of Physics Belgrade, University of Belgradeen
dc.addressScientific Computing Laboratory, Center for the Study of Complex Systems, Institute of Physics Belgrade, University of Belgradeen
dc.addressDepartment of Applied Mathematics and Physics, Graduate School of Informatics, Kyoto Universityen
dc.addressDepartment of Applied Physics, Osaka City Universityen
dcterms.accessRightsopen access-
datacite.date.available2019-06-22-
datacite.awardNumber26800059-
jpcoar.funderName日本学術振興会ja
jpcoar.funderName.alternativeJapan Society for the Promotion of Science (JSPS)en
出現コレクション:学術雑誌掲載論文等

アイテムの簡略レコードを表示する

Export to RefWorks


出力フォーマット 


このリポジトリに保管されているアイテムはすべて著作権により保護されています。