このアイテムのアクセス数: 180
このアイテムのファイル:
ファイル | 記述 | サイズ | フォーマット | |
---|---|---|---|---|
1751-8121_aaca41.pdf | 414.46 kB | Adobe PDF | 見る/開く |
完全メタデータレコード
DCフィールド | 値 | 言語 |
---|---|---|
dc.contributor.author | Dmitrašinović, V | en |
dc.contributor.author | Hudomal, Ana | en |
dc.contributor.author | Shibayama, Mitsuru | en |
dc.contributor.author | Sugita, Ayumu | en |
dc.contributor.alternative | 柴山, 允瑠 | ja |
dc.date.accessioned | 2019-04-08T02:20:32Z | - |
dc.date.available | 2019-04-08T02:20:32Z | - |
dc.date.issued | 2018-08-03 | - |
dc.identifier.issn | 1751-8113 | - |
dc.identifier.uri | http://hdl.handle.net/2433/240754 | - |
dc.description.abstract | We test numerically the recently proposed linear relationship between the scale-invariant period Ts.i.= T|E|³/², and the topology of an orbit, on several hundred planar Newtonian periodic three-body orbits. Here T is the period of an orbit, E is its energy, so that Ts.i. is the scale-invariant period, or, equivalently, the period at unit energy |E| = 1. All of these orbits have vanishing angular momentum and pass through a linear, equidistant configuration at least once. Such orbits are classified in ten algebraically well-defined sequences. Orbits in each sequence follow an approximate linear dependence of Ts.i., albeit with slightly different slopes and intercepts. The orbit with the shortest period in its sequence is called the 'progenitor': six distinct orbits are the progenitors of these ten sequences. We have studied linear stability of these orbits, with the result that 21 orbits are linearly stable, which includes all of the progenitors. This is consistent with the Birkhoff–Lewis theorem, which implies existence of infinitely many periodic orbits for each stable progenitor, and in this way explains the existence and ensures infinite extension of each sequence. | en |
dc.format.mimetype | application/pdf | - |
dc.language.iso | eng | - |
dc.publisher | IOP Publishing | en |
dc.rights | This is an author-created, un-copyedited version of an article accepted for publication in Journal of Physics A: Mathematical and Theoretical. The publisher is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at https://doi.org/10.1088/1751-8121/aaca41. | en |
dc.rights | The full-text file will be made open to the public on 22 June 2019 in accordance with publisher's 'Terms and Conditions for Self-Archiving'. | en |
dc.rights | This is not the published version. Please cite only the published version. | en |
dc.rights | この論文は出版社版でありません。引用の際には出版社版をご確認ご利用ください。 | ja |
dc.title | Linear stability of periodic three-body orbits with zero angular momentum and topological dependence of Kepler's third law: a numerical test | en |
dc.type | journal article | - |
dc.type.niitype | Journal Article | - |
dc.identifier.jtitle | Journal of Physics A: Mathematical and Theoretical | en |
dc.identifier.volume | 51 | - |
dc.identifier.issue | 31 | - |
dc.relation.doi | 10.1088/1751-8121/aaca41 | - |
dc.textversion | author | - |
dc.identifier.artnum | 315101 | - |
dc.address | Institute of Physics Belgrade, University of Belgrade | en |
dc.address | Scientific Computing Laboratory, Center for the Study of Complex Systems, Institute of Physics Belgrade, University of Belgrade | en |
dc.address | Department of Applied Mathematics and Physics, Graduate School of Informatics, Kyoto University | en |
dc.address | Department of Applied Physics, Osaka City University | en |
dcterms.accessRights | open access | - |
datacite.date.available | 2019-06-22 | - |
datacite.awardNumber | 26800059 | - |
jpcoar.funderName | 日本学術振興会 | ja |
jpcoar.funderName.alternative | Japan Society for the Promotion of Science (JSPS) | en |
出現コレクション: | 学術雑誌掲載論文等 |

このリポジトリに保管されているアイテムはすべて著作権により保護されています。