Access count of this item: 271

Files in This Item:
File Description SizeFormat 
B53-08.pdf1.69 MBAdobe PDFView/Open
Title: 高次Chow群を用いた有限体上の多様体のゼータ関数の特殊値の記述 : サーベイ (Algebraic Number Theory and Related Topics 2013)
Other Titles: Special values of zeta functions of varieties over finite fields via higher Chow groups : a survey (Algebraic Number Theory and Related Topics 2013)
Authors: 宮崎, 弘安  KAKEN_name
Author's alias: Miyazaki, Hiroyasu
Keywords: 11M38
14C15
19E15
special value
zeta function
higher Chow group
weight homology
weight complex
Issue Date: Sep-2015
Publisher: Research Institute for Mathematical Sciences, Kyoto University
Journal title: 数理解析研究所講究録別冊
Volume: B53
Start page: 103
End page: 115
Abstract: 本稿の目的は, 有限体上の(特異な)多様体のゼータ関数の特殊値を, 高次チャウ群を用いて記述する筆者の結果([15])を概説することである. 正確には, 高次チャウ群から重みホモロジー群とよばれる不変量への写像の核と余核の位数の商の交代積として, 特殊値を記述する公式を与える. 証明の主なアイディアは, 重みスペクトル系列を用いて問題をスムーズかつ固有な場合に帰着することである.
The aim of this paper is to survey the author s result (to appear in [15]), which describes special values of zeta functions of (singular) varieties over finite fields by using higher Chow groups. To be precise, we show that the special value at s = 0 is equal to the alternating product of the ratio of the cardinalities of kernels and cokernels of maps from higher Chow group to another invariant which is called weight homology. The principal idea of proof is to reduce the problem to the case that the variety is smooth and proper by using weight spectral sequences.
Description: "Algebraic Number Theory and Related Topics 2013". December 9~13, 2013. edited by Tadashi Ochiai, Takeshi Tsuji and Iwao Kimura. The papers presented in this volume of RIMS Kôkyûroku Bessatsu are in final form and refereed.
Rights: © 2015 by the Research Institute for Mathematical Sciences, Kyoto University. All rights reserved.
URI: http://hdl.handle.net/2433/241278
Appears in Collections:B53 Algebraic Number Theory and Related Topics 2013

Show full item record

Export to RefWorks


Export Format: 


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.