ダウンロード数: 45
このアイテムのファイル:
ファイル | 記述 | サイズ | フォーマット | |
---|---|---|---|---|
2061-13.pdf | 731.2 kB | Adobe PDF | 見る/開く |
タイトル: | CENTRAL ELEMENTS OF THE JENNINGS BASIS AND CERTAIN MORITA INVARIANTS (Cohomology theory of finite groups and related topics) |
著者: | Sakurai, Taro |
著者名の別形: | 櫻井, 太朗 |
キーワード: | 16G30 16U70 16D90 16D25 20C20 Morita invariant center socle Reynolds ideal $p$-group Jennings basis dimension subgroup |
発行日: | Apr-2018 |
出版者: | 京都大学数理解析研究所 |
誌名: | 数理解析研究所講究録 |
巻: | 2061 |
開始ページ: | 98 |
終了ページ: | 105 |
抄録: | From Morita theoretic viewpoint, computing Morita invariants is important. We proved that the intersection of the center and the nth socle ZS^{n}(A) :=Z(A)cap mathrm{S}mathrm{o}mathrm{c}^{n}(A) of a finite dimensional algebra A is Morita invariant; This is a generalization of important Morita invariants, the center Z(A) and the Reynolds ideal ZS^{1}(A). As an example, we also studied ZS^{n}(FP) for the group algebra FP of a finite p-group P over a field F of positive characteristic p. Such an algebra has a basis along the radical filtration, known as the Jennings basis. We show sufficient conditions under which an element of the Jennings basis is central and a lower bound for the dimension of ZS^{n}(FP) for every positive integer n. Equalities hold for 1 leq n leq p if P is powerful. As a corollary we have Somathrm{c}^{p} (FP) subseteq Z(FP) if P is powerful. This is a report of a talk based on [Sakurai, arXiv:1701.03799v2]. |
URI: | http://hdl.handle.net/2433/241858 |
出現コレクション: | 2061 有限群のコホモロジー論とその周辺 |
このリポジトリに保管されているアイテムはすべて著作権により保護されています。