ダウンロード数: 73
このアイテムのファイル:
ファイル | 記述 | サイズ | フォーマット | |
---|---|---|---|---|
2083-02.pdf | 1.61 MB | Adobe PDF | 見る/開く |
タイトル: | An Alternative Proof of 1-Generic Splittings (Proof theory and proving) |
著者: | Mizusawa, Yuki Ban, Koichiro Suzuki, Toshio |
著者名の別形: | 水澤, 勇気 伴, 滉一郎 鈴木, 登志雄 |
キーワード: | 1-generic set Ershov hierarchy d.c.e. set 2-c.e. set |
発行日: | Aug-2018 |
出版者: | 京都大学数理解析研究所 |
誌名: | 数理解析研究所講究録 |
巻: | 2083 |
開始ページ: | 8 |
終了ページ: | 25 |
抄録: | Wu (2006) showed that every nonzero computably enumerable degree splits into two 1-generic degrees, and therefore, no two computably enumerable degrees bound the same class of 1-generic degrees. By relativizing this result with respect to the Lachlan set, it can be shown that (*) every nonzero d.c.e. degree splits into four 1-generic degrees. Here, a set A is d.c.e. (or, 2-c.e.) if there are two computably enumerable sets B and C such that A = B-C (set difference). Turing degree of a d.c.e. set is called a d.c.e. degree. By (*), no two d.c.e. degrees bound the same class of 1-generic degrees. Chong and Yu (2016) improved the result (*). In fact, it is split into two 1-generic degrees. In this note, we propose a construction with rollbacks of stages. By means of this construction, we give an alternative proof of (*). |
URI: | http://hdl.handle.net/2433/242192 |
出現コレクション: | 2083 証明論と証明活動 |
このリポジトリに保管されているアイテムはすべて著作権により保護されています。