このアイテムのアクセス数: 79

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
2083-12.pdf1.3 MBAdobe PDF見る/開く
完全メタデータレコード
DCフィールド言語
dc.contributor.authorFujita, Ken-etsuen
dc.contributor.alternative藤田, 憲悦ja
dc.contributor.transcriptionフジタ, ケンエツ-
dc.date.accessioned2019-06-24T02:55:23Z-
dc.date.available2019-06-24T02:55:23Z-
dc.date.issued2018-08-
dc.identifier.issn1880-2818-
dc.identifier.urihttp://hdl.handle.net/2433/242202-
dc.description.abstractThe Church-Rosser theorem in the type-free $lambda$-calculus is well investigated both for $beta$-equality and $beta$-reduction. We provide a new proof of the theorem for $beta$-equality simply with Takahashi's translation. Based on this, we analyze quantitative properties of witnesses of the Church-Rosser theorem by using the notion of parallel reduction. In particular, upper bounds for reduction sequences on the theorem are obtained as the fourth level of the Grzegorczyk hierarchy, i.e., non-elementary recursive functions. Moreover, the proof method developed here can be applied to other reduction systems such as $lambda$-calculus with $beta eta$-reduction, Girard's system $Gamma$, Gödel's system mathrm{T}, combinatory logic, and Pure Type Systems as well.en
dc.format.mimetypeapplication/pdf-
dc.language.isoeng-
dc.publisher京都大学数理解析研究所ja
dc.publisher.alternativeResearch Institute for Mathematical Sciences, Kyoto Universityen
dc.subject.ndc410-
dc.titleThe Church-Rosser Theorem and Analysis of Reduction Length (Proof theory and proving)en
dc.typedepartmental bulletin paper-
dc.type.niitypeDepartmental Bulletin Paper-
dc.identifier.ncidAN00061013-
dc.identifier.jtitle数理解析研究所講究録ja
dc.identifier.volume2083-
dc.identifier.spage124-
dc.identifier.epage136-
dc.textversionpublisher-
dc.sortkey12-
dc.addressGunma Universityen
dc.address.alternative群馬大学ja
dcterms.accessRightsopen access-
datacite.awardNumber17K05343-
dc.identifier.jtitle-alternativeRIMS Kokyurokuen
jpcoar.funderName日本学術振興会ja
jpcoar.funderName.alternativeJapan Society for the Promotion of Science (JSPS)en
出現コレクション:2083 証明論と証明活動

アイテムの簡略レコードを表示する

Export to RefWorks


出力フォーマット 


このリポジトリに保管されているアイテムはすべて著作権により保護されています。