ダウンロード数: 264

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
s10846-019-01052-8.pdf2.12 MBAdobe PDF見る/開く
タイトル: First-person Video Analysis for Evaluating Skill Level in the Humanitude Tender-Care Technique
著者: Nakazawa, Atsushi  KAKEN_id
Mitsuzumi, Yu
Watanabe, Yuki
Kurazume, Ryo
Yoshikawa, Sakiko
Honda, Miwako
著者名の別形: 中澤, 篤志
三鼓, 悠
倉爪, 亮
吉川, 左紀子
本田, 美和子
キーワード: Dementia
Care
Deep neural network (DNN)
Skill evaluation
Wearable system
Computer vision
First person video
発行日: Apr-2020
出版者: Springer Science and Business Media LLC
誌名: Journal of Intelligent & Robotic Systems
巻: 98
号: 1
開始ページ: 103
終了ページ: 118
抄録: In this paper, we describe a wearable first-person video (FPV) analysis system for evaluating the skill levels of caregivers. This is a part of our project that aims to quantize and analyze the tender-care technique known as Humanitude by using wearable sensing and AI technology devices. Using our system, caregivers can evaluate and elevate their care levels by themselves. From the FPVs of care sessions taken by wearable cameras worn by caregivers, we obtained the 3D facial distance, pose and eye-contact states between caregivers and receivers by using facial landmark detection and deep neural network (DNN)-based eye contact detection. We applied statistical analysis to these features and developed algorithms that provide scores for tender-care skill. In experiments, we first evaluated the performance of our DNN-based eye contact detection by using eye contact datasets prepared from YouTube videos and FPVs that assume conversational scenes. We then performed skill evaluations by using Humanitude training scenes involving three novice caregivers, two Humanitude experts and seven middle-level students. The results showed that our eye contact detection outperformed existing methods and that our skill evaluations can estimate the care skill levels.
記述: 優しさを伝える介護技術の習熟度をAIで評価する手法を開発 --画像認識で熟練者と初心者の違いを見つける--. 京都大学プレスリリース. 2019-07-11.
著作権等: © The Author(s) 2019. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
URI: http://hdl.handle.net/2433/242958
DOI(出版社版): 10.1007/s10846-019-01052-8
関連リンク: https://www.kyoto-u.ac.jp/ja/research-news/2019-07-11-0
出現コレクション:学術雑誌掲載論文等

アイテムの詳細レコードを表示する

Export to RefWorks


出力フォーマット 


このリポジトリに保管されているアイテムはすべて著作権により保護されています。