Access count of this item: 6

Files in This Item:
File Description SizeFormat 
s40623-019-1064-0.pdf1.48 MBAdobe PDFView/Open
Title: Orbital evolution of a circumbinary planet in a gaseous disk
Authors: Yamanaka, Akihiro
Sasaki, Takanori
Author's alias: 佐々木, 貴教
Keywords: Planets and satellites: dynamical evolution and stability
Planets and satellites: formation
Planet-disk interactions
Issue Date: 30-Jul-2019
Publisher: Springer Science and Business Media LLC
Journal title: Earth, Planets and Space
Volume: 71
Thesis number: 82
Abstract: Sub-Jupiter classed circumbinary planets discovered in close-in binary systems have orbits just beyond the dynamically unstable region, which is determined by the eccentricity and mass ratio of the host binary stars. These planets are assumed to have formed beyond the snow line and migrated to the current orbits rather than forming in situ. We propose a scenario in which a planet formed beyond the snow line and migrated to the inner edge of the circumbinary disk, which was within the unstable area, and then moved to the current orbit through outward transportation. This outward transportation is driven by the balance of orbital excitation of the central stars inside the gravitationally unstable region and damping by the gas-drag force. We carried out N-body simulations with a dissipating circumbinary protoplanetary disk for binary systems with different eccentricities and mass ratios. Planets are more likely to achieve a stable orbit just beyond the unstable region in less eccentric binary systems. This result is not as sensitive to mass ratio as it is to eccentricity. These dependencies are consistent with the data from observed binary systems hosting circumbinary planets. We find CBPs’ orbits close to the instability boundaries are explained by our orbital evolution scenario.
Rights: © The Author(s). This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
URI: http://hdl.handle.net/2433/243267
DOI(Published Version): 10.1186/s40623-019-1064-0
Appears in Collections:Journal Articles

Show full item record

Export to RefWorks


Export Format: 


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.