このアイテムのアクセス数: 115
このアイテムのファイル:
ファイル | 記述 | サイズ | フォーマット | |
---|---|---|---|---|
B61-06.pdf | 3.82 MB | Adobe PDF | 見る/開く |
タイトル: | The functor $beta_{Y}(cdot)$ and mixed problems for $mathcal{D}_{X}$-modules (Microlocal Analysis and Singular Perturbation Theory) |
著者: | Kataoka, Kiyoomi |
著者名の別形: | カタオカ, キヨオミ |
キーワード: | 35L53 35Q60 58J15 microlocal analysis analyticity hyperfunctions boundary value problems mixed problems |
発行日: | Jan-2017 |
出版者: | Research Institute for Mathematical Sciences, Kyoto University |
誌名: | 数理解析研究所講究録別冊 |
巻: | B61 |
開始ページ: | 97 |
終了ページ: | 108 |
抄録: | Let M be a real analytic manifold, and N be its real analytic submanifold with codimension 1. We denote by X, Y their complexifications. First, we give an algebraic formulation of mixed initial boundary value problems for coherent left DX-modules by using sheaf βY (OX) introduced in [1]. This formulation is of coordinate free because βY (OX) is defined only on X and Y. At the same time, we give a functorial construction of βY (OX). The main results under this formulation are coordinate-free generalizations of our previous results [2] for single differential equations; for example, the estimate of the micro-support of some important solution complex. We will give in [3] the detailed proofs and applications; the existence results of hyperfunction solutions, and the propagation results of micro-analyticity of the solutions along the boundary N as obtained by J. Sjöstrand [4]. |
記述: | "Microlocal Analysis and Singular Perturbation Theory". October 5~9, 2015. edited by Yoshitsugu Takei, Takashi Aoki, Naofitmi Honda, Kiyoomi Kataoka and Tatsuya Koike. The papers presented in this volume of RIMS Kôkyûroku Bessatsu are in final form and refereed. |
著作権等: | © 2017 by the Research Institute for Mathematical Sciences, Kyoto University. All rights reserved. |
URI: | http://hdl.handle.net/2433/243628 |
出現コレクション: | B61 Microlocal Analysis and Singular Perturbation Theory |

このリポジトリに保管されているアイテムはすべて著作権により保護されています。