このアイテムのアクセス数: 133

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
transinf.2018EDP7420.pdf15.44 MBAdobe PDF見る/開く
タイトル: A trend-shift model for global factor analysis of investment products
著者: Kirihata, Makoto
Ma, Qiang
著者名の別形: 桐畑, 誠
馬, 強
キーワード: Factor analysis
State space model
Trend detection
発行日: Nov-2019
出版者: Institute of Electronics, Information and Communication Engineers (IEICE)
誌名: IEICE Transactions on Information and Systems
巻: E102.D
号: 11
開始ページ: 2205
終了ページ: 2213
抄録: Recently, more and more people start investing. Understanding the factors affecting financial products is important for making investment decisions. However, it is difficult to understand factors for novices because various factors affect each other. Various technique has been studied, but conventional factor analysis methods focus on revealing the impact of factors over a certain period locally, and it is not easy to predict net asset values. As a reasonable solution for the prediction of net asset values, in this paper, we propose a trend shift model for the global analysis of factors by introducing trend change points as shift interference variables into state space models. In addition, to realize the trend shift model efficiently, we propose an effective trend detection method, TP-TBSM (two-phase TBSM), by extending TBSM (trend-based segmentation method). Comparing with TBSM, TP-TBSM could detect trends flexibly by reducing the dependence on parameters. We conduct experiments with eleven investment trust products and reveal the usefulness and effectiveness of the proposed model and method.
著作権等: © 2019 The Institute of Electronics, Information and Communication Engineers
URI: http://hdl.handle.net/2433/245892
DOI(出版社版): 10.1587/transinf.2018EDP7420
出現コレクション:学術雑誌掲載論文等

アイテムの詳細レコードを表示する

Export to RefWorks


出力フォーマット 


このリポジトリに保管されているアイテムはすべて著作権により保護されています。