ダウンロード数: 94

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
s41598-018-38224-9.pdf1.15 MBAdobe PDF見る/開く
完全メタデータレコード
DCフィールド言語
dc.contributor.authorRavindran, Vandanaen
dc.contributor.authorNacher, Jose C.en
dc.contributor.authorAkutsu, Tatsuyaen
dc.contributor.authorIshitsuka, Masayukien
dc.contributor.authorOsadcenco, Adrianen
dc.contributor.authorSunitha, V.en
dc.contributor.authorBagler, Ganeshen
dc.contributor.authorSchwartz, Jean-Marcen
dc.contributor.authorRobertson, David L.en
dc.contributor.alternative阿久津, 達也ja
dc.contributor.alternative石塚, 雅之ja
dc.date.accessioned2020-03-30T02:01:34Z-
dc.date.available2020-03-30T02:01:34Z-
dc.date.issued2019-02-14-
dc.identifier.issn2045-2322-
dc.identifier.urihttp://hdl.handle.net/2433/249986-
dc.description.abstractIn recent years control theory has been applied to biological systems with the aim of identifying the minimum set of molecular interactions that can drive the network to a required state. However, in an intra-cellular network it is unclear how control can be achieved in practice. To address this limitation we use viral infection, specifically human immunodeficiency virus type 1 (HIV-1) and hepatitis C virus (HCV), as a paradigm to model control of an infected cell. Using a large human signalling network comprised of over 6000 human proteins and more than 34000 directed interactions, we compared two states: normal/uninfected and infected. Our network controllability analysis demonstrates how a virus efficiently brings the dynamically organised host system into its control by mostly targeting existing critical control nodes, requiring fewer nodes than in the uninfected network. The lower number of control nodes is presumably to optimise exploitation of specific sub-systems needed for virus replication and/or involved in the host response to infection. Viral infection of the human system also permits discrimination between available network-control models, which demonstrates that the minimum dominating set (MDS) method better accounts for how the biological information and signals are organised during infection by identifying most viral proteins as critical driver nodes compared to the maximum matching (MM) method. Furthermore, the host driver nodes identified by MDS are distributed throughout the pathways enabling effective control of the cell via the high ‘control centrality’ of the viral and targeted host nodes. Our results demonstrate that control theory gives a more complete and dynamic understanding of virus exploitation of the host system when compared with previous analyses limited to static single-state networks.en
dc.format.mimetypeapplication/pdf-
dc.language.isoeng-
dc.publisherSpringer Natureen
dc.rights© The Author(s) 2019. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.en
dc.subjectControl theoryen
dc.subjectNetwork topologyen
dc.titleNetwork controllability analysis of intracellular signalling reveals viruses are actively controlling molecular systemsen
dc.typejournal article-
dc.type.niitypeJournal Article-
dc.identifier.jtitleScientific Reportsen
dc.identifier.volume9-
dc.relation.doi10.1038/s41598-018-38224-9-
dc.textversionpublisher-
dc.identifier.artnum2066-
dc.identifier.pmid30765882-
dcterms.accessRightsopen access-
datacite.awardNumber18K11535-
datacite.awardNumber18H04113-
jpcoar.funderName日本学術振興会ja
jpcoar.funderName日本学術振興会ja
jpcoar.funderName.alternativeJapan Society for the Promotion of Science (JSPS)en
jpcoar.funderName.alternativeJapan Society for the Promotion of Science (JSPS)en
出現コレクション:学術雑誌掲載論文等

アイテムの簡略レコードを表示する

Export to RefWorks


出力フォーマット 


このリポジトリに保管されているアイテムはすべて著作権により保護されています。