このアイテムのアクセス数: 147

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
biom10020306.pdf17.1 MBAdobe PDF見る/開く
完全メタデータレコード
DCフィールド言語
dc.contributor.authorTanaka, Yoshihisaen
dc.contributor.authorTamada, Yoshinorien
dc.contributor.authorIkeguchi, Marieen
dc.contributor.authorYamashita, Fumiyoshien
dc.contributor.authorOkuno, Yasushien
dc.contributor.alternative田中, 良尚ja
dc.contributor.alternative玉田, 嘉紀ja
dc.contributor.alternative池口, 茉莉恵ja
dc.contributor.alternative山下, 富義ja
dc.contributor.alternative奥野, 恭史ja
dc.date.accessioned2020-05-11T03:01:20Z-
dc.date.available2020-05-11T03:01:20Z-
dc.date.issued2020-02-
dc.identifier.issn2218-273X-
dc.identifier.urihttp://hdl.handle.net/2433/250777-
dc.description.abstractGene network estimation is a method key to understanding a fundamental cellular system from high throughput omics data. However, the existing gene network analysis relies on having a sufficient number of samples and is required to handle a huge number of nodes and estimated edges, which remain difficult to interpret, especially in discovering the clinically relevant portions of the network. Here, we propose a novel method to extract a biomedically significant subnetwork using a Bayesian network, a type of unsupervised machine learning method that can be used as an explainable and interpretable artificial intelligence algorithm. Our method quantifies sample specific networks using our proposed Edge Contribution value (ECv) based on the estimated system, which realizes condition-specific subnetwork extraction using a limited number of samples. We applied this method to the Epithelial-Mesenchymal Transition (EMT) data set that is related to the process of metastasis and thus prognosis in cancer biology. We established our method-driven EMT network representing putative gene interactions. Furthermore, we found that the sample-specific ECv patterns of this EMT network can characterize the survival of lung cancer patients. These results show that our method unveils the explainable network differences in biological and clinical features through artificial intelligence technology.en
dc.format.mimetypeapplication/pdf-
dc.language.isoeng-
dc.publisherMDPI AGen
dc.rights© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).en
dc.subjectgene networken
dc.subjectdifferential network analysisen
dc.subjectlung cancer survival analysisen
dc.subjectEMTen
dc.titleSystem-Based Differential Gene Network Analysis for Characterizing a Sample-Specific Subnetworken
dc.typejournal article-
dc.type.niitypeJournal Article-
dc.identifier.jtitleBiomoleculesen
dc.identifier.volume10-
dc.identifier.issue2-
dc.relation.doi10.3390/biom10020306-
dc.textversionpublisher-
dc.identifier.artnum306-
dc.identifier.pmid32075209-
dcterms.accessRightsopen access-
出現コレクション:学術雑誌掲載論文等

アイテムの簡略レコードを表示する

Export to RefWorks


出力フォーマット 


このリポジトリに保管されているアイテムはすべて著作権により保護されています。