このアイテムのアクセス数: 52

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
2084-07.pdf2.64 MBAdobe PDF見る/開く
完全メタデータレコード
DCフィールド言語
dc.contributor.authorItai, Masanorien
dc.contributor.alternative板井, 昌典ja
dc.contributor.transcriptionイタイ, マサノリ-
dc.date.accessioned2020-06-19T04:17:50Z-
dc.date.available2020-06-19T04:17:50Z-
dc.date.issued2018-08-
dc.identifier.issn1880-2818-
dc.identifier.urihttp://hdl.handle.net/2433/251530-
dc.description.abstractLet thetain mathbb{R}backslash mathbb{Q}. We defined a notion of quantum 2-torus T_{theta} in [1] and studied its model theoretic properties. In the subsequent paper [2], we introduced the notion of geometric equivalence and also of Morita equivalence between such quantum 2-tori. We showed that this notion is closely connected with the fUndamental notion of Morita equivalence of non-commutative geometry. Namely, we proved that the quantum 2-tori T_{theta_{1}} and T_{theta_{2}} are Morita equivalent if and only if theta_{2}=frac{atheta_{1}+b}{ctheta_{1}+d} for some begin{aray}{l} a b c d end{aray}in GL_{2}(mathbb{Z}). This is our version of Rieffel's Theorem [4] which characterizes Morita equivalence of quantum tori in the same terms. In this note we reconsider the relation between the original version of Rieffel's theorem and our model theoretic version.en
dc.format.mimetypeapplication/pdf-
dc.language.isoeng-
dc.publisher京都大学数理解析研究所ja
dc.publisher.alternativeResearch Institute for Mathematical Sciences, Kyoto Universityen
dc.subject.ndc410-
dc.titleOn Rieffel's theorem (Model theoretic aspects of the notion of independence and dimension)en
dc.typedepartmental bulletin paper-
dc.type.niitypeDepartmental Bulletin Paper-
dc.identifier.ncidAN00061013-
dc.identifier.jtitle数理解析研究所講究録ja
dc.identifier.volume2084-
dc.identifier.spage39-
dc.identifier.epage47-
dc.textversionpublisher-
dc.sortkey07-
dc.addressDepartment of Mathematical Sciences, Tokai Universityen
dc.address.alternative東海大学理学部情報数理学科ja
dcterms.accessRightsopen access-
dc.identifier.jtitle-alternativeRIMS Kokyurokuen
出現コレクション:2084 モデル理論における独立概念と次元の研究

アイテムの簡略レコードを表示する

Export to RefWorks


出力フォーマット 


このリポジトリに保管されているアイテムはすべて著作権により保護されています。