このアイテムのアクセス数: 54
このアイテムのファイル:
ファイル | 記述 | サイズ | フォーマット | |
---|---|---|---|---|
2096-11.pdf | 515.92 kB | Adobe PDF | 見る/開く |
タイトル: | Primitivity of group rings of groups with non-trivial center (Algebras, logics, languages and related areas) |
著者: | Nishinaka, Tsunekazu |
著者名の別形: | 西中, 恒和 |
発行日: | Dec-2018 |
出版者: | 京都大学数理解析研究所 |
誌名: | 数理解析研究所講究録 |
巻: | 2096 |
開始ページ: | 72 |
終了ページ: | 76 |
抄録: | In [2], we consider the following condition (*) : for each subset M of G consisting of a finite number of elements not equal to 1, and for any positive integer m, there exist distinct a, b, and c in G so that if (x_{1}^{-1}g_{1}x_{1})cdots(x_{m}^{-1}g_{rn}x_{m})=1, where g_{i} is in M and x_{i} is equal to a, b, or c for all i between 1 and m, then x_{i}=x_{i+1} for some i. This condition is often satisfied by a non-noetherian group which has a non-abelian free subgroup and the trivial center. For a such group G, we have proved that the group ring RG of G over a domain R is primitive if G satisfies (*) and |R|leq|G|. However as long as we deal with groups satisfying (*), since the center of them are always trivial, we can say nothing about primitivity of group rings of groups with nontrivial center. In this note, we consider a more general condition than the above one and give a primitivity result for group rings of groups with non-trivial center. |
URI: | http://hdl.handle.net/2433/251738 |
出現コレクション: | 2096 代数系、論理、言語とその周辺領域 |

このリポジトリに保管されているアイテムはすべて著作権により保護されています。