このアイテムのアクセス数: 96
このアイテムのファイル:
ファイル | 記述 | サイズ | フォーマット | |
---|---|---|---|---|
2111-02.pdf | 8.1 MB | Adobe PDF | 見る/開く |
タイトル: | A Concise Approximation for the Early Exercise Boundary of American Options (Financial Modeling and Analysis) |
著者: | Kimura, Toshikazu |
著者名の別形: | 木村, 俊一 |
発行日: | Apr-2019 |
出版者: | 京都大学数理解析研究所 |
誌名: | 数理解析研究所講究録 |
巻: | 2111 |
開始ページ: | 12 |
終了ページ: | 21 |
抄録: | This paper provides a concise approximation for the early exercise boundary (EEB) of an American option written on dividend-paying assets. Although a vast majority of traded options are of American-style optimally exercised before maturity, there are no explicit formulas for their prices as well as EEBs even in the standard model called vanilla. A closed-form EEB approximation is especially important in decision-making on optimal early exercise. Following a simple but indefinite idea of Carr et al. (1992) based on van Moerbeke (1976), we focus on a class of interpolation approximations with a square-root exponential weight. The unsettled problem there was how to determine the exponential decay rate. Applying the Laplace-Carson transform approach to this problem, we derive an explicit decay rate of the exponential weight to develop a pair of new EEB approximations for vanilla put/call options, both of which are consistent with the principal boundary features. |
URI: | http://hdl.handle.net/2433/251974 |
出現コレクション: | 2111 ファイナンスの数理解析とその応用 |

このリポジトリに保管されているアイテムはすべて著作権により保護されています。