このアイテムのアクセス数: 75

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
2112-04.pdf6.74 MBAdobe PDF見る/開く
完全メタデータレコード
DCフィールド言語
dc.contributor.authorLin, Lai-Jiuen
dc.date.accessioned2020-06-19T04:32:07Z-
dc.date.available2020-06-19T04:32:07Z-
dc.date.issued2019-04-
dc.identifier.issn1880-2818-
dc.identifier.urihttp://hdl.handle.net/2433/251986-
dc.description.abstractIn this paper, we consider iteration processes of Halpern's type to find fixed point of quasi-nonexpansive mapping and common element of solution for the split common fixed point of quasi-nonexpansive mappings. We establish strong convergence theorems of this problems. We apply our results to study the common element of solution of multiple split fixed point problems for quasi-nonexpansive mappings. We also apply our result to study common element of solution for the equilibrium problem and the fixed point of generalized hybrid mapping. Our result gives an partial answer to two open questions which were given by Chidume and Chidume [11], and Kurokawa and Takahashi[12].en
dc.format.mimetypeapplication/pdf-
dc.language.isoeng-
dc.publisher京都大学数理解析研究所ja
dc.publisher.alternativeResearch Institute for Mathematical Sciences, Kyoto Universityen
dc.subject47H06en
dc.subject47H09en
dc.subject47H10en
dc.subject47J25en
dc.subject65K15en
dc.subjectFixed point of quasi-nonexpansive mappingsen
dc.subjectstrong quasi-nonexpansive mappingen
dc.subjecthybrid mappingen
dc.subjectwidely more generalized mappingen
dc.subjectmultiple split fixed point problemen
dc.subjectsplit feasibility problemen
dc.subjectmultiple sets split feasibility problemen
dc.subject.ndc410-
dc.titleHalpern's Iteration Process for Multiple Sets Split Common Fixed Point of Quasi-Nonexpansive Mappings (Study on Nonlinear Analysis and Convex Analysis)en
dc.typedepartmental bulletin paper-
dc.type.niitypeDepartmental Bulletin Paper-
dc.identifier.ncidAN00061013-
dc.identifier.jtitle数理解析研究所講究録ja
dc.identifier.volume2112-
dc.identifier.spage27-
dc.identifier.epage40-
dc.textversionpublisher-
dc.sortkey04-
dc.addressDepartment of Mathematics, National Changhua University of Educationen
dcterms.accessRightsopen access-
dc.identifier.jtitle-alternativeRIMS Kokyurokuen
出現コレクション:2112 非線形解析学と凸解析学の研究

アイテムの簡略レコードを表示する

Export to RefWorks


出力フォーマット 


このリポジトリに保管されているアイテムはすべて著作権により保護されています。