このアイテムのアクセス数: 73
このアイテムのファイル:
ファイル | 記述 | サイズ | フォーマット | |
---|---|---|---|---|
2112-07.pdf | 8.88 MB | Adobe PDF | 見る/開く |
タイトル: | Applications of Convex-valued KKM maps (Study on Nonlinear Analysis and Convex Analysis) |
著者: | Park, Sehie |
キーワード: | Abstract convex space (partial) KKM principle (partial) KKM space geometric principle variational inequality minimax equality systems of inequalities maximal monotone operator super-reflexive Banach space Hilbert space |
発行日: | Apr-2019 |
出版者: | 京都大学数理解析研究所 |
誌名: | 数理解析研究所講究録 |
巻: | 2112 |
開始ページ: | 54 |
終了ページ: | 64 |
抄録: | This is to introduce the contents of two articles of Granas and Lassonde [2, 3] on applications of some elementary principles of convex analysis. In the first article, they presented a geometric approach in the theory of minimax inequalities, which has numerous applications in different areas of mathematics. In the second article, they complement and elucidate the preceding approach within the context of complete metric spaces. In this paper, we give abstract convex space versions of the basic results of [2, 3], and, as the supplements of overviews on recently developed KKM theory in [5, 8], we introduce applications appeared in [2, 3]. Consequently, many of known results in the traditional convex analysis can be deduced from the KKM theory. |
URI: | http://hdl.handle.net/2433/251989 |
出現コレクション: | 2112 非線形解析学と凸解析学の研究 |

このリポジトリに保管されているアイテムはすべて著作権により保護されています。