ダウンロード数: 72

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
2114-11.pdf580.35 kBAdobe PDF見る/開く
タイトル: Robust minimax optimization problems with applications (Nonlinear Analysis and Convex Analysis)
著者: Jiao, Liguo
Kim, Do Sang
発行日: May-2019
出版者: 京都大学数理解析研究所
誌名: 数理解析研究所講究録
巻: 2114
開始ページ: 96
終了ページ: 102
抄録: In this paper, we study the optimality conditions and duality in minimax programming problems in the face of data uncertainty. Following the robust optimization approach (worst-case approach), we formulate its robust counterpart of the minimax programming problems under data uncertainty. A representation of the normal cone to a convex set is established under the robust characteristic cone constraint qualification. Then, by using the obtained result, we propose the necessary condition for optimal solutions of the considered problem; moreover, a dual problem in term of Wolfe type to the primal one is stated; and weak and strong duality relations between them are explored. Finally, some of these results are applied to a robust multiobjective optimization problem.
URI: http://hdl.handle.net/2433/252041
出現コレクション:2114 非線形解析学と凸解析学の研究

アイテムの詳細レコードを表示する

Export to RefWorks


出力フォーマット 


このリポジトリに保管されているアイテムはすべて著作権により保護されています。