このアイテムのアクセス数: 150
このアイテムのファイル:
ファイル | 記述 | サイズ | フォーマット | |
---|---|---|---|---|
ACCESS.2019.2951537.pdf | 6.97 MB | Adobe PDF | 見る/開く |
完全メタデータレコード
DCフィールド | 値 | 言語 |
---|---|---|
dc.contributor.author | Yang, Yang | en |
dc.contributor.author | Hou, Chunping | en |
dc.contributor.author | Lang, Yue | en |
dc.contributor.author | Sakamoto, Takuya | en |
dc.contributor.author | He, Yuan | en |
dc.contributor.author | Xiang, Wei | en |
dc.contributor.alternative | 阪本, 卓也 | ja |
dc.date.accessioned | 2020-06-29T06:22:57Z | - |
dc.date.available | 2020-06-29T06:22:57Z | - |
dc.date.issued | 2020-05 | - |
dc.identifier.issn | 0196-2892 | - |
dc.identifier.uri | http://hdl.handle.net/2433/252366 | - |
dc.description.abstract | In remote sensing, micro-Doppler signatures are widely used in moving target detection and automatic target recognition. However, since Doppler signatures are easily affected by the moving direction of the target, prior information of aspect angle is essential for spectral analysis. Thus, a micro-Doppler-based classifier is considered to be “angle-sensitive.” In this article, we propose an angle-insensitive classifier for the omnidirectional classification problem using the monostatic radar through a proposed new convolutional neural network. We further provide a sensible definition of “angle sensitivity, ” and perform experiments on two data sets obtained through simulations and measurements. The results demonstrate that the proposed algorithm outperforms both feature-based and existing deep-learning-based counterparts, and resolve the issue of angle sensitivity in micro-Doppler-based classification. | en |
dc.format.mimetype | application/pdf | - |
dc.language.iso | eng | - |
dc.publisher | Institute of Electrical and Electronics Engineers (IEEE) | en |
dc.rights | © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. | en |
dc.rights | The full-text file will be made open to the public on 1 May 2022 in accordance with publisher's 'Terms and Conditions for Self-Archiving'. | en |
dc.rights | This is not the published version. Please cite only the published version. | en |
dc.rights | この論文は出版社版でありません。引用の際には出版社版をご確認ご利用ください。 | ja |
dc.title | Omnidirectional motion classification with mono-static radar using micro-Doppler signatures | en |
dc.type | journal article | - |
dc.type.niitype | Journal Article | - |
dc.identifier.jtitle | IEEE Transactions on Geoscience and Remote Sensing | en |
dc.identifier.volume | 58 | - |
dc.identifier.issue | 5 | - |
dc.identifier.spage | 3574 | - |
dc.identifier.epage | 3587 | - |
dc.relation.doi | 10.1109/TGRS.2019.2958178 | - |
dc.textversion | author | - |
dc.address | School of Electrical and Information Engineering, Tianjin University | en |
dc.address | School of Electrical and Information Engineering, Tianjin University | en |
dc.address | School of Electrical and Information Engineering, Tianjin University | en |
dc.address | Graduate School of Engineering, Kyoto University | en |
dc.address | School of Information and Communication Engineering, Beijing University of Posts and Telecommunications | en |
dc.address | College of Science and Engineering, James Cook University | en |
dcterms.accessRights | open access | - |
datacite.date.available | 2022-05-01 | - |
出現コレクション: | 学術雑誌掲載論文等 |

このリポジトリに保管されているアイテムはすべて著作権により保護されています。