このアイテムのアクセス数: 276
このアイテムのファイル:
ファイル | 記述 | サイズ | フォーマット | |
---|---|---|---|---|
ACCESS.2019.2954294.pdf | 2.17 MB | Adobe PDF | 見る/開く |
完全メタデータレコード
DCフィールド | 値 | 言語 |
---|---|---|
dc.contributor.author | Wu, Shuqiong | en |
dc.contributor.author | Sakamoto, Takuya | en |
dc.contributor.author | Oishi, Kentaro | en |
dc.contributor.author | Sato, Toru | en |
dc.contributor.author | Inoue, Kenichi | en |
dc.contributor.author | Fukuda, Takeshi | en |
dc.contributor.author | Mizutani, Kenji | en |
dc.contributor.author | Sakai, Hiroyuki | en |
dc.contributor.alternative | 武, 淑瓊 | ja |
dc.contributor.alternative | 阪本, 卓也 | ja |
dc.contributor.alternative | 大石, 健太郎 | ja |
dc.contributor.alternative | 佐藤, 亨 | ja |
dc.date.accessioned | 2020-06-29T07:02:20Z | - |
dc.date.available | 2020-06-29T07:02:20Z | - |
dc.date.issued | 2019-11-19 | - |
dc.identifier.issn | 2169-3536 | - |
dc.identifier.uri | http://hdl.handle.net/2433/252367 | - |
dc.description.abstract | Vital-sign estimation using ultra-wideband (UWB) radar is preferable because it is contactless and less privacy-invasive. Recently, many approaches have been proposed for estimating heart rate from UWB radar data. However, their performance is still not reliable enough for practical applications. To improve the accuracy, this study employs convolutional neural networks to learn the special patterns of the heartbeats. In the proposed system, skin displacements of the target person are measured using UWB radar, and the radar signal is converted to a two-dimensional matrix, which is used as the input of the designed neural networks. Meanwhile, two triangular waves corresponding to the peaks and valleys in an electrocardiogram are adopted as the output of the networks. The proposed system then identifies each individual and estimates the heart rate automatically based on the already trained neural networks. The estimation error of the interbeat interval computed using our approach was reduced to 4.5 ms in the best case; and 48.5 ms in the worst case. Experiment results show that the proposed approach significantly outperforms a conventional method. The proposed machine learning approach achieves both personal identification and heart rate estimation simultaneously using UWB radar data for the first time. Moreover, this study found that using the respiration and heartbeat components together may enhance the accuracy of heart rate estimation, which is counter-intuitive, because the respiration is usually believed to interfere with the heartbeat. | en |
dc.format.mimetype | application/pdf | - |
dc.language.iso | eng | - |
dc.publisher | Institute of Electrical and Electronics Engineers (IEEE) | en |
dc.rights | This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ | en |
dc.title | Person-specific heart rate estimation with ultra-wideband radar using convolutional neural networks | en |
dc.type | journal article | - |
dc.type.niitype | Journal Article | - |
dc.identifier.jtitle | IEEE Access | en |
dc.identifier.volume | 7 | - |
dc.relation.doi | 10.1109/ACCESS.2019.2954294 | - |
dc.textversion | publisher | - |
dc.identifier.artnum | 168494 | - |
dc.address | Graduate School of Informatics, Kyoto University | en |
dc.address | Graduate School of Engineering, Kyoto University | en |
dc.address | Graduate School of Informatics, Kyoto University | en |
dc.address | Institute for Liberal Arts and Sciences, Kyoto University | en |
dc.address | Technology Innovation Division, Institute for Sensors and Devices, Panasonic Corporation | en |
dc.address | Technology Innovation Division, Institute for Sensors and Devices, Panasonic Corporation | en |
dc.address | Technology Innovation Division, Institute for Sensors and Devices, Panasonic Corporation | en |
dc.address | Technology Liaison Department, Innovation Strategy Office, Panasonic Corporation | en |
dcterms.accessRights | open access | - |
dc.identifier.eissn | 2169-3536 | - |
出現コレクション: | 学術雑誌掲載論文等 |

このリポジトリに保管されているアイテムはすべて著作権により保護されています。