このアイテムのアクセス数: 276

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
ACCESS.2019.2954294.pdf2.17 MBAdobe PDF見る/開く
完全メタデータレコード
DCフィールド言語
dc.contributor.authorWu, Shuqiongen
dc.contributor.authorSakamoto, Takuyaen
dc.contributor.authorOishi, Kentaroen
dc.contributor.authorSato, Toruen
dc.contributor.authorInoue, Kenichien
dc.contributor.authorFukuda, Takeshien
dc.contributor.authorMizutani, Kenjien
dc.contributor.authorSakai, Hiroyukien
dc.contributor.alternative武, 淑瓊ja
dc.contributor.alternative阪本, 卓也ja
dc.contributor.alternative大石, 健太郎ja
dc.contributor.alternative佐藤, 亨ja
dc.date.accessioned2020-06-29T07:02:20Z-
dc.date.available2020-06-29T07:02:20Z-
dc.date.issued2019-11-19-
dc.identifier.issn2169-3536-
dc.identifier.urihttp://hdl.handle.net/2433/252367-
dc.description.abstractVital-sign estimation using ultra-wideband (UWB) radar is preferable because it is contactless and less privacy-invasive. Recently, many approaches have been proposed for estimating heart rate from UWB radar data. However, their performance is still not reliable enough for practical applications. To improve the accuracy, this study employs convolutional neural networks to learn the special patterns of the heartbeats. In the proposed system, skin displacements of the target person are measured using UWB radar, and the radar signal is converted to a two-dimensional matrix, which is used as the input of the designed neural networks. Meanwhile, two triangular waves corresponding to the peaks and valleys in an electrocardiogram are adopted as the output of the networks. The proposed system then identifies each individual and estimates the heart rate automatically based on the already trained neural networks. The estimation error of the interbeat interval computed using our approach was reduced to 4.5 ms in the best case; and 48.5 ms in the worst case. Experiment results show that the proposed approach significantly outperforms a conventional method. The proposed machine learning approach achieves both personal identification and heart rate estimation simultaneously using UWB radar data for the first time. Moreover, this study found that using the respiration and heartbeat components together may enhance the accuracy of heart rate estimation, which is counter-intuitive, because the respiration is usually believed to interfere with the heartbeat.en
dc.format.mimetypeapplication/pdf-
dc.language.isoeng-
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)en
dc.rightsThis work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/en
dc.titlePerson-specific heart rate estimation with ultra-wideband radar using convolutional neural networksen
dc.typejournal article-
dc.type.niitypeJournal Article-
dc.identifier.jtitleIEEE Accessen
dc.identifier.volume7-
dc.relation.doi10.1109/ACCESS.2019.2954294-
dc.textversionpublisher-
dc.identifier.artnum168494-
dc.addressGraduate School of Informatics, Kyoto Universityen
dc.addressGraduate School of Engineering, Kyoto Universityen
dc.addressGraduate School of Informatics, Kyoto Universityen
dc.addressInstitute for Liberal Arts and Sciences, Kyoto Universityen
dc.addressTechnology Innovation Division, Institute for Sensors and Devices, Panasonic Corporationen
dc.addressTechnology Innovation Division, Institute for Sensors and Devices, Panasonic Corporationen
dc.addressTechnology Innovation Division, Institute for Sensors and Devices, Panasonic Corporationen
dc.addressTechnology Liaison Department, Innovation Strategy Office, Panasonic Corporationen
dcterms.accessRightsopen access-
dc.identifier.eissn2169-3536-
出現コレクション:学術雑誌掲載論文等

アイテムの簡略レコードを表示する

Export to RefWorks


出力フォーマット 


このリポジトリに保管されているアイテムはすべて著作権により保護されています。