このアイテムのアクセス数: 139
このアイテムのファイル:
ファイル | 記述 | サイズ | フォーマット | |
---|---|---|---|---|
s12888-019-2382-2.pdf | 556.53 kB | Adobe PDF | 見る/開く |
タイトル: | Predicting recurrence of depression using lifelog data: an explanatory feasibility study with a panel VAR approach |
著者: | Kumagai, Narimasa Tajika, Aran ![]() ![]() ![]() Hasegawa, Akio Kawanishi, Nao Horikoshi, Masaru Shimodera, Shinji Kurata, Ken’ichi Chino, Bun Furukawa, Toshi A. |
著者名の別形: | 熊谷, 成将 田近, 亜蘭 長谷川, 晃朗 川西, 直 堀越, 勝 下寺, 信次 倉田, 健一 茅野, 分 古川, 壽亮 |
キーワード: | Depression Kessler psychological distress scale Kurashi-app Lifelog Long sleep time Panel vector autoregressive model Patient health Questionnaire-9 |
発行日: | 11-Dec-2019 |
出版者: | Springer Science and Business Media LLC |
誌名: | BMC Psychiatry |
巻: | 19 |
論文番号: | 391 |
抄録: | Background: Although depression has a high rate of recurrence, no prior studies have established a method that could identify the warning signs of its recurrence. Methods: We collected digital data consisting of individual activity records such as location or mobility information (lifelog data) from 89 patients who were on maintenance therapy for depression for a year, using a smartphone application and a wearable device. We assessed depression and its recurrence using both the Kessler Psychological Distress Scale (K6) and the Patient Health Questionnaire-9. Results: A panel vector autoregressive analysis indicated that long sleep time was a important risk factor for the recurrence of depression. Long sleep predicted the recurrence of depression after 3 weeks. Conclusions: The panel vector autoregressive approach can identify the warning signs of depression recurrence; however, the convenient sampling of the present cohort may limit the scope towards drawing a generalised conclusion. |
著作権等: | © The Author(s). 2019. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
URI: | http://hdl.handle.net/2433/254112 |
DOI(出版社版): | 10.1186/s12888-019-2382-2 |
PubMed ID: | 31829206 |
出現コレクション: | 学術雑誌掲載論文等 |

このリポジトリに保管されているアイテムはすべて著作権により保護されています。