このアイテムのアクセス数: 139

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
s12888-019-2382-2.pdf556.53 kBAdobe PDF見る/開く
タイトル: Predicting recurrence of depression using lifelog data: an explanatory feasibility study with a panel VAR approach
著者: Kumagai, Narimasa
Tajika, Aran  kyouindb  KAKEN_id  orcid https://orcid.org/0000-0003-3926-8867 (unconfirmed)
Hasegawa, Akio
Kawanishi, Nao
Horikoshi, Masaru
Shimodera, Shinji
Kurata, Ken’ichi
Chino, Bun
Furukawa, Toshi A.
著者名の別形: 熊谷, 成将
田近, 亜蘭
長谷川, 晃朗
川西, 直
堀越, 勝
下寺, 信次
倉田, 健一
茅野, 分
古川, 壽亮
キーワード: Depression
Kessler psychological distress scale
Kurashi-app
Lifelog
Long sleep time
Panel vector autoregressive model
Patient health Questionnaire-9
発行日: 11-Dec-2019
出版者: Springer Science and Business Media LLC
誌名: BMC Psychiatry
巻: 19
論文番号: 391
抄録: Background: Although depression has a high rate of recurrence, no prior studies have established a method that could identify the warning signs of its recurrence. Methods: We collected digital data consisting of individual activity records such as location or mobility information (lifelog data) from 89 patients who were on maintenance therapy for depression for a year, using a smartphone application and a wearable device. We assessed depression and its recurrence using both the Kessler Psychological Distress Scale (K6) and the Patient Health Questionnaire-9. Results: A panel vector autoregressive analysis indicated that long sleep time was a important risk factor for the recurrence of depression. Long sleep predicted the recurrence of depression after 3 weeks. Conclusions: The panel vector autoregressive approach can identify the warning signs of depression recurrence; however, the convenient sampling of the present cohort may limit the scope towards drawing a generalised conclusion.
著作権等: © The Author(s). 2019. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
URI: http://hdl.handle.net/2433/254112
DOI(出版社版): 10.1186/s12888-019-2382-2
PubMed ID: 31829206
出現コレクション:学術雑誌掲載論文等

アイテムの詳細レコードを表示する

Export to RefWorks


出力フォーマット 


このリポジトリに保管されているアイテムはすべて著作権により保護されています。