このアイテムのアクセス数: 123

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
2138-02.pdf4.03 MBAdobe PDF見る/開く
完全メタデータレコード
DCフィールド言語
dc.contributor.author野呂, 正行ja
dc.contributor.alternativeNORO, MASAYUKIen
dc.contributor.transcriptionノロ, マサユキ-
dc.date.accessioned2020-09-29T05:52:29Z-
dc.date.available2020-09-29T05:52:29Z-
dc.date.issued2019-12-
dc.identifier.issn1880-2818-
dc.identifier.urihttp://hdl.handle.net/2433/254878-
dc.description.abstractThe first implementation of Grabner basis computation in Risa/Asir started in 1993. The Shimoyama-Yokoyama algorithm for primary decomposition of ideals was implemented by using it in 1996. In 2003 a completely new package for Grabner basis computation was developed. By using this new package we implemented a new primary decomposition algorithm that does not produce any redundant primary component in 2011. We want many people to use new functions, but unfortunately not a few people still use old ones. Recently we replaced the functions for bignum computation with GMP [9]. As a result we could greatly improve the efficiency of Groebner basis computation over the rationals. In this article we show the current status of Risa/Asir to make the new features known by as many people as possible.en
dc.format.mimetypeapplication/pdf-
dc.language.isojpn-
dc.publisher京都大学数理解析研究所ja
dc.publisher.alternativeResearch Institute for Mathematical Sciences, Kyoto Universityen
dc.subject.ndc410-
dc.titleGröbner basis computation in Risa/Asir (Computer Algebra --Theory and its Applications)en
dc.typedepartmental bulletin paper-
dc.type.niitypeDepartmental Bulletin Paper-
dc.identifier.ncidAN00061013-
dc.identifier.jtitle数理解析研究所講究録ja
dc.identifier.volume2138-
dc.identifier.spage12-
dc.identifier.epage20-
dc.textversionpublisher-
dc.sortkey02-
dc.address立教大学理学部ja
dc.address.alternativeDEPARTMENT OF MATHEMATICS, RIKKYO UNIVERSITYen
dcterms.accessRightsopen access-
dc.identifier.jtitle-alternativeRIMS Kokyurokuen
出現コレクション:2138 Computer Algebra --Theory and its Applications

アイテムの簡略レコードを表示する

Export to RefWorks


出力フォーマット 


このリポジトリに保管されているアイテムはすべて著作権により保護されています。