このアイテムのアクセス数: 240
このアイテムのファイル:
ファイル | 記述 | サイズ | フォーマット | |
---|---|---|---|---|
978-3-030-55789-8_38.pdf | 295.74 kB | Adobe PDF | 見る/開く |
完全メタデータレコード
DCフィールド | 値 | 言語 |
---|---|---|
dc.contributor.author | Zhang, Fan | en |
dc.contributor.author | Zhu, Jianshen | en |
dc.contributor.author | Chiewvanichakorn, Rachaya | en |
dc.contributor.author | Shurbevski, Aleksandar | en |
dc.contributor.author | Nagamochi, Hiroshi | en |
dc.contributor.author | Akutsu, Tatsuya | en |
dc.contributor.alternative | 朱, 見深 | ja |
dc.contributor.alternative | 永持, 仁 | ja |
dc.contributor.alternative | 阿久津, 達也 | ja |
dc.date.accessioned | 2020-10-19T01:14:50Z | - |
dc.date.available | 2020-10-19T01:14:50Z | - |
dc.date.issued | 2020 | - |
dc.identifier.isbn | 9783030557898 | - |
dc.identifier.uri | http://hdl.handle.net/2433/255597 | - |
dc.description | 33rd International Conference on Industrial, Engineering and Other Applications of Applied Intelligent Systems, IEA/AIE 2020, Kitakyushu, Japan, September 22-25, 2020. | en |
dc.description | Part of the book series: Lecture Notes in Computer Science (LNCS, volume 12144) | en |
dc.description.abstract | Computer-aided drug design is one of important application areas of intelligent systems. Recently a novel method has been proposed for inverse QSAR/QSPR using both artificial neural networks (ANN) and mixed integer linear programming (MILP), where inverse QSAR/QSPR is a major approach for drug design. This method consists of two phases: In the first phase, a feature function f is defined so that each chemical compound G is converted into a vector f(G) of several descriptors of G, and a prediction function ψ is constructed with an ANN so that ψ(f(G)) takes a value nearly equal to a given chemical property π for many chemical compounds G in a data set. In the second phase, given a target value y∗ of the chemical property π , a chemical structure G∗ is inferred in the following way. An MILP M is formulated so that M admits a feasible solution (x∗, y∗) if and only if there exist vectors x∗, y∗ and a chemical compound G∗ such that ψ(x∗)=y∗ and f(G∗)=x∗. The method has been implemented for inferring acyclic chemical compounds. In this paper, we propose a new MILP for inferring acyclic chemical compounds by introducing a novel concept, skeleton tree, and conducted computational experiments. The results suggest that the proposed method outperforms the existing method when the diameter of graphs is up to around 6 to 8. For an instance for inferring acyclic chemical compounds with 38 non-hydrogen atoms from C, O and S and diameter 6, our method was 5×104 times faster. | en |
dc.format.mimetype | application/pdf | - |
dc.language.iso | eng | - |
dc.publisher | Springer Nature | en |
dc.relation.ispartof | 9783030557898 | - |
dc.rights | This is a post-peer-review, pre-copyedit version of an article published in Trends in Artificial Intelligence Theory and Applications. Artificial Intelligence Practices. The final authenticated version is available online at: http://dx.doi.org/10.1007/978-3-030-55789-8_38. | en |
dc.rights | The full-text file will be made open to the public on 4 September 2021 in accordance with publisher's 'Terms and Conditions for Self-Archiving'. | en |
dc.rights | This is not the published version. Please cite only the published version. | en |
dc.rights | この論文は出版社版でありません。引用の際には出版社版をご確認ご利用ください。 | ja |
dc.title | A New Integer Linear Programming Formulation to the Inverse QSAR/QSPR for Acyclic Chemical Compounds Using Skeleton Trees | en |
dc.type | conference paper | - |
dc.type.niitype | Conference Paper | - |
dc.identifier.jtitle | Trends in Artificial Intelligence Theory and Applications. Artificial Intelligence Practices | en |
dc.identifier.spage | 433 | - |
dc.identifier.epage | 444 | - |
dc.relation.doi | 10.1007/978-3-030-55789-8_38 | - |
dc.textversion | author | - |
dc.address | Department of Applied Mathematics and Physics, Kyoto University | en |
dc.address | Department of Applied Mathematics and Physics, Kyoto University | en |
dc.address | Department of Applied Mathematics and Physics, Kyoto University | en |
dc.address | Department of Applied Mathematics and Physics, Kyoto University | en |
dc.address | Department of Applied Mathematics and Physics, Kyoto University | en |
dc.address | Bioinformatics Center, Institute for Chemical Research, Kyoto University | en |
dcterms.accessRights | open access | - |
datacite.date.available | 2021-09-04 | - |
出現コレクション: | 学術雑誌掲載論文等 |

このリポジトリに保管されているアイテムはすべて著作権により保護されています。